Previous |  Up |  Next


Title: Classifications and characterizations of Baire-1 functions (English)
Author: Kiriakouli, P.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 733-748
Category: math
Summary: Kechris and Louveau in [5] classified the bounded Baire-1 functions, which are defined on a compact metric space $K$, to the subclasses $\Cal B_{1}^{\xi }(K)$, $\xi < \omega_1$. In [8], for every ordinal $\xi < \omega_{1}$ we define a new type of convergence for sequences of real-valued functions ($\xi $-uniformly pointwise) which is between uniform and pointwise convergence. In this paper using this type of convergence we obtain a classification of pointwise convergent sequences of continuous real-valued functions defined on a compact metric space $K$, and also we give a characterization of the classes $\Cal B_{1}^{\xi }(K)$, $1 \leq \xi < \omega_{1}$. (English)
Keyword: Baire-1 functions
Keyword: convergence index
Keyword: oscillation index
Keyword: trees
MSC: 46E99
MSC: 54C30
MSC: 54C35
MSC: 54C50
idZBL: Zbl 1060.54506
idMR: MR1715462
Date available: 2009-01-08T18:48:02Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Alspach D., Argyros S.: Complexity of weakly null sequences.Dissertationes Math. CCCXXI (1992), 1-44. Zbl 0787.46009, MR 1191024
Reference: [2] Alspach D., Odell E.: Averaging null sequences.Lectures Notes in Math. 1332, Springer, Berlin, 1988. MR 0967092
Reference: [3] Bourgain J.: On convergent sequences of continuous functions.Bull. Soc. Math. Belg. Ser. B 32 (1980), 235-249. Zbl 0474.54008, MR 0682645
Reference: [4] Haydon R., Odell E., Rosenthal H.: On certain classes of Baire-1 functions with applications to Banach space theory.Longhorn Notes, The University of Texas at Austin, Functional Analysis Seminar 1987-89. Zbl 0762.46006
Reference: [5] Kechris A.S., Louveau A.: A classification of Baire class 1 functions.Trans. Amer. Math. Soc. 318 (1990), 209-236. Zbl 0692.03031, MR 0946424
Reference: [6] Kiriakouli P.: Namioka spaces, Baire-1 functions, Combinatorial principles of the type of Ramsey and their applications in Banach spaces theory (in Greek).Doctoral Dissertation, Athens Univ., 1994.
Reference: [7] Kiriakouli P.: A classification of Baire-1 functions.Trans. Amer. Math. Soc., to appear. Zbl 0926.03056, MR 1407705
Reference: [8] Kiriakouli P.: On pointwise convergent sequences of continuous functions with continuous limits.preprint.
Reference: [9] Kiriakouli P., Papanastassiou N.: Convergence for sequences of functions and an Egorov type theorem.preprint. Zbl 1034.28001, MR 2018591
Reference: [10] Mercourakis S.: On Cesaro summable sequences of continuous functions.Mathematika 42 (1995), 87-104. Zbl 0826.46001, MR 1346674
Reference: [11] Mercourakis S.: On some generalizations of the classical Banach-Saks properties.preprint, 1994.
Reference: [12] Mercourakis S., Negrepontis S.: Banach spaces and topology II.Recent Progress in General Topology, M. Hušek and J. van Mill, eds., Elsevier Science Publishers B.V., 1992, pp.495-536. Zbl 0832.46005


Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_9.pdf 285.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo