Article
Keywords:
concrete category; optimal subset; reflexive subobject lattice; reflexive endomorphism algebra
Summary:
In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category {\bf Set} of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.
References:
                        
[1] Davey B.A., Priestley H.A.: 
Introduction to Lattices and Order. Cambridge Text Book, Cambridge University Press, 1994. 
MR 1902334 | 
Zbl 1002.06001[4] Preuss G.: 
Theory of Topological Structures - An approach to Categorical Topology. D. Reidel Publishing Company, 1988. 
MR 0937052 | 
Zbl 0649.54001[5] Harrison K.J., Longstaff W.E.: 
Automorphic images of commutative subspace lattices. Proc. Amer. Math. Soc. 296 (1) (1986), 217-228. 
MR 0837808 | 
Zbl 0616.46021[6] Longstaff W.E.: 
Strongly reflexive subspace lattices. J. London Math. Soc. (2) 11 (1975), 491-498. 
MR 0394233[7] Longstaff W.E.: 
On lattices whose every realization on Hilbert space is reflexive. J. London Math. Soc. (2) 37 (1988), 499-508. 
MR 0939125 | 
Zbl 0654.47025[8] Longstaff W.E., Oreste P.: 
On the ranks of single elements of reflexive operator algebras. Proc. Amer. Math. Soc. 125 (10) (1997), 2875-2882. 
MR 1402872 | 
Zbl 0883.47024[9] Manes E.G.: 
Algebraic Theories. Graduate Texts in Mathematics 26, Springer-Verlag, 1976. 
MR 0419557 | 
Zbl 0489.18003[12] Schmidt R.: 
Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin-New York, 1994. 
MR 1292462 | 
Zbl 1026.20015[13] Raney G.N.: 
Completely distributive lattices. Proc. Amer. Math. Soc. 3 (1952), 677-680. 
MR 0052392