[1] Capogna L.: 
Regularity of quasilinear equations in the Heisenberg group. Comm. Pure Appl. Math. 50 (1997), 867-889. 
MR 1459590[2] Capogna L.: 
Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups. Math. Ann. 313 (1999), 263-295. 
MR 1679786 | 
Zbl 0927.35024[3] Capogna L., Danielli D., Garofalo N.: 
An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Comm. Partial Differential Equations 18 (9-10) (1993), 1765-1794. 
MR 1239930 | 
Zbl 0802.35024[4] Cutrí A., Garroni M.G.: 
Existence, uniqueness and regularity results for integro-differential Heisenberg equations. Adv. in Differential Equations 1 (1996), 920-939. 
MR 1409894[5] Di Benedetto E.: 
$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 8 (1983), 827-850. 
MR 0709038[6] Evans C.L.: 
A new proof of local $C^{1+\alpha }$ regularity for solutions of certain degenerate elliptic P.D.E. J. Differential Equations 45 (1982), 356-373. 
MR 0672713[7] Folland G.B.: 
Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161-207. 
MR 0494315 | 
Zbl 0312.35026[8] Folland G.B., Stein E.M.: 
Estimates for the $øverline{\partial}_h$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 459-522. 
MR 0367477[9] Giusti E.: 
Direct methods in the calculus of variations (in Italian). Unione Matematica Italiana, Bologna (1994). 
MR 1707291[10] Hörmander L.: 
Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171. 
MR 0222474[11] Jerison D.: 
The Poincaré inequality for vector fields satisfying Hörmander's condition. Duke Math. J. 53 (1986), 503-523. 
MR 0850547 | 
Zbl 0614.35066[12] Ladyzenskaja O.A., Ural'tzeva N.N.: 
Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968. 
MR 0244627[13] Lewis J.: 
Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66 (1977), 201-224. 
MR 0477094 | 
Zbl 0393.46028[14] Lewis J.: 
Regularity of the derivatives of solutions of certain degenerate elliptic equations. Indiana Univ. Math. J. 32 6 (1983), 849-858. 
MR 0721568[15] Lu G.: 
Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev. Mat. Iberoamericana 8 3 (1992), 367-439. 
MR 1202416 | 
Zbl 0804.35015[16] Maz'ja V.G.: 
Sobolev Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1985. 
Zbl 0692.46023[17] Marchi S.: 
Hölder continuity and Harnack inequality for De Giorgi classes related to Hörmander vector fields. Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171-188. 
MR 1378243 | 
Zbl 0861.35018[18] Marchi S.: 
$C^{1,\alpha}$ local regularity for the solutions of the p-Laplacian on the Heisenberg group. The case $2\le p<1+\sqrt{5}$. Z. Anal. Anwendungen 20 (2001), 3 617-636. 
MR 1863937 | 
Zbl 0988.35066[19] Marchi S.: 
$L^p$ regularity of the derivatives in the second commutator's direction for nonlinear elliptic equations on the Heisenberg group. in print on Accademia dei XL. 
Zbl 0102.20501[20] Moser J.: 
On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. XIV (1991), 577-591. 
MR 0159138[21] Nagel A., Stein E.M., Wainger S.: 
Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155 (1985), 103-147. 
MR 0793239 | 
Zbl 0578.32044[22] Serrin J.: 
Local behaviour of solutions of quasi-linear elliptic equations. Acta Math. 111 (1964), 247-302. 
MR 0170096[23] Stein E.M.: 
Singular Integrals and Differentiability Properties. Princeton Univ. Press, Princeton, 1970. 
MR 0290095 | 
Zbl 0281.44003[24] Triebel H.: 
Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam-New York-Oxford, 1978. 
MR 0503903 | 
Zbl 0830.46028[25] Triebel H.: 
Theory of Function Spaces. Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. 
MR 0781540 | 
Zbl 1104.46001[26] Tolksdorf P.: 
Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150. 
MR 0727034[27] Uhlenbeck K.: 
Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977), 219-240. 
MR 0474389 | 
Zbl 0372.35030[28] Ural'tzeva N.N.: 
Degenerate quasilinear elliptic systems. Zap. Nauchno Sem. Leningrad Otdel. Mat. Steklov 7 (1968), 184-222. 
MR 0244628[29] Xu C.J.: 
Regularity for quasilinear second-order subelliptic equations. Comm. Pure Appl. Math. XLV (1992), 77-96. 
MR 1135924 | 
Zbl 0827.35023