[1] Adams M.E., Beazer R.: 
Congruence properties of distributive double $p$-algebras. Czechoslovak Math. J. 41 (1991), 395-404. 
MR 1117792 | 
Zbl 0758.06008[2] Adámek J., Herrlich H., Strecker G.: 
Abstract and concrete categories. Wiley Interscience, New York, 1990. 
MR 1051419[3] Ball R.N., Pultr A.: 
Forbidden Forests in Priestley Spaces. Cahiers Topologie Géom. Différentielle Catég. 45 1 (2004), 2-22. 
MR 2040660 | 
Zbl 1062.06020[4] Ball R.N., Pultr A., Sichler J.: 
Priestley configurations and Heyting varieties. submitted for publication. 
Zbl 1165.06003[5] Ball R.N., Pultr A., Sichler J.: 
Configurations in coproducts of Priestley spaces. to appear in Appl. Categ. Structures. 
MR 2141593 | 
Zbl 1086.06012[6] Burris S., Sankappanavar H.P.: 
A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer, New York-Heidelberg-Berlin, 1981. 
MR 0648287 | 
Zbl 0478.08001[7] Davey B.A., Priestley H.A.: 
Introduction to Lattices and Order. second edition, Cambridge University Press, New York, 2001. 
MR 1902334 | 
Zbl 1002.06001[8] Koubek V., Sichler J.: 
On Priestley duals of products. Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 243-256. 
MR 1158110 | 
Zbl 0774.06006[9] Łoś J.: Quelques remarques, théorèmes et problèmes sur les classes définisables d'algèbres. Mathematical interpretation of formal systems, North-Holland, Amsterdam, 1955, pp.98-113.
[10] Monteiro A.: 
L'arithmetique des filtres et les espaces topologiques. I, II, Notas de Lógica Matemática (1974), 29-30. 
Zbl 0318.06019[11] Priestley H.A.: 
Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186-190. 
MR 0265242 | 
Zbl 0201.01802[12] Priestley H.A.: 
Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 324 (1972), 507-530. 
MR 0300949 | 
Zbl 0323.06011