[1] Abel U.: 
On the asymptotic approximation with Bivariate operators of Bleimann, Butzer and Hahn. J. Approx. Theory 97 (1999), 181-198. 
MR 1676351 | 
Zbl 0928.41012[4] Abel U., Ivan M.: 
A Kantorovich variant of the Bleimann, Butzer and Hahn operators. Rend. Circ. Mat. Palermo (2) Suppl. (2002), 68 205-218. 
MR 1975505 | 
Zbl 1012.41016[5] Bleimann G., Butzer P.L., Hahn L.: 
A Bernstein-type operator approximating continuous functions of the semi-axis. Indag. Math. 42 (1980), 255-262. 
MR 0587054[7] Della Vecchia B.: 
Some properties of a rational operator of Bernstein-type. in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.177-185. 
MR 1114772[8] Hermann T.: 
On the operator of Bleimann, Butzer and Hahn. Colloq. Math. Soc. János Bolyai 58 (1991), 355-360. 
MR 1211445 | 
Zbl 0784.41016[10] Khan R.A.: 
Some properties of a Bernstein-type operator of Bleimann, Butzer and Hahn. in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.497-504. 
MR 1114792[12] Nowak G., Pych-Taberska P.: 
Approximation properties of the generalized Favard-Kantorovich operators. Comment. Math. Prace Mat. 39 (1999), 139-152. 
MR 1739024 | 
Zbl 0970.41014[14] Totik V.: 
Uniform approximation by Bernstein-type operators. Indag. Math. 46 (1984), 87-93. 
MR 0748982 | 
Zbl 0538.41035