[1] E. Emre: 
Generalized model matching and (F, G)-invariant submodules for linear systems over rings. Linear Algebra Appl. 50 (1983), 133-166. 
MR 0699562 | 
Zbl 0523.93029[2] M. Gajowniczek: A polynomial matrix approach to exact model matching of 2-D linear systems. Proc. of IV Polish-English seminar on Real Time Process Control, Jablonna, Poland, pp. 75-83.
[3] V. Kucera: 
Discrete Linear Control: The Polynomial Equation Approach. John Wiley, Chichester 1979. 
MR 0573447 | 
Zbl 0432.93001[4] V. Kucera, M. Sebek: 
Model matching of discrete linear systems. Syst. Control Lett. 1 (1982), 321-325. 
Zbl 0489.93038[5] M. Morf B. C. Levy, S. Y. Kung: New results in 2-D systems theory, Pt. I.: 2-D polynomial matrices, factorization and coprimeness. Proc. IEEE 65 (1977), 861 - 872.
[6] P. N. Paraskevopoulos: 
Exact model matching of 2-D systems via state feedback. J. Franklin Inst. JOS (1979), 475-486. 
MR 0550979 | 
Zbl 0417.93019[7] P. N. Paraskevopoulos: 
Transfer function matrix synthesis of two-dimensional systems. IEEE Trans. Automat. Control AC-25 (1980), 321-324. 
Zbl 0432.93048[8] P. N. Paraskevopoulos, and I. O. Kosmidou: 
Dynamic compensation for exact modelmatching of two-dimensional systems. Internat. J. Systems Sci. 11 (1980), 1163-1175. 
MR 0593081[9] M.  Šebek: 2-D exact model   matching. IEEE Trans. Automat.  Control AC-28 (1983), 215-217.
[10] M. Šebek: 
2-D polynomial equations. Kybernetika 19 (1983), 212-223. 
MR 0716650[11] B. L. van der Waerden: Modern Algebra. 4th edition, Frederic Ungar, New York 1964.
[12] Y. Yasuda: 
On the synthesis of model-following two-dimensional digital systems. Internát. J. Control 34 (1981), 321-325. 
MR 0631816 | 
Zbl 0476.93022