[1] A. Boccuto: 
Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14 (1998), 293–323. 
MR 1651221[2] M. Duchoň and B. Riečan: 
On the Kurzweil-Stieltjes integral in ordered spaces. Tatra Mt. Math. Publ. 8 (1996), 133–141. 
MR 1475272[3] D. H. Fremlin: 
Topological Riesz Spaces and Measure Theory. Cambridge Univ. Press, 1994. 
MR 0454575[4] D. H. Fremlin: 
A direct proof of the Matthes-Wright integral extension theorem. J.  London Math. Soc. 11 (1975), 276–284. 
MR 0380345 | 
Zbl 0313.06016[5] L. P. Lee and R. Výborný: 
The integral: An easy approach after Kurzweil and Henstock. Cambridge Univ. Press, 2000. 
MR 1756319[6] B. Riečan: 
On the Kurzweil integral for functions with values in ordered spaces  I. Acta Math. Univ. Comenian. 56–57 (1990), 75–83. 
MR 1083014[7] B. Riečan: 
On operator valued measures in lattice ordered groups. Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 235–238. 
MR 1225686[8] B. Riečan and T. Neubrunn: 
Integral, Measure and Ordering. Kluwer Academic Publishers/Ister Science, 1997. 
MR 1489521[9] B. Riečan and M. Vrábelová: 
On the Kurzweil integral for functions with values in ordered spaces  II. Math. Slovaca 43 (1993), 471–475. 
MR 1248980[10] B. Riečan and M. Vrábelová: 
On integration with respect to operator valued measures in Riesz spaces. Tatra Mt. Math. Publ. 2 (1993), 149–165. 
MR 1251049[11] B. Riečan and M. Vrábelová: 
On the Kurzweil integral for functions with values in ordered spaces  III. Tatra Mt. Math. Publ. 8 (1996), 93–100. 
MR 1475267