[1] R. Balbes and Ph.  Dwinger: 
Distributive Lattices. University of Missouri Press, Columbia, 1974. 
MR 0373985[2] G.  Birkhoff: 
Lattice Theory, Third Edition. AMS, Providence, 1967. 
MR 0227053[3] V.  Boicescu, A,  Filipoiu, G.  Georgescu and S. Rudeanu: 
Łukasiewicz-Moisil Algebras. North-Holland, Amsterdam, 1991. 
MR 1112790[5] R. Cignoli: Lectures at Buenos Aires University. 2000.
[6] R.  Cignoli, M. I. D’Ottaviano and D.  Mundici: 
Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 2000. 
MR 1786097[7] R. Cignoli and A.  Torrens: 
An algebraic analysis of product logic. Multiple Valued Logic 5 (2000), 45–65. 
MR 1743553[9] A. De Simone, M.  Navara and P.  Pták: 
On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolin. 42 (2001), 23–30. 
MR 1825370[12] G.  Georgescu and A. Iorgulescu: 
Pseudo $MV$-algebras. 6 (2001), 95–135. 
MR 1817439[13] P. Hájek: 
Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998. 
MR 1900263[14] U.  Höhle: 
Commutative, residuated $l$-monoids. In: Non-Classical Logics and their Applications to Fuzzy Subset. A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U.  Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995. 
MR 1345641[15] J.  Jakubík: 
A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Czechoslovak Math.  J (to appear). 
MR 1889037[17] S.  Koppelberg: 
Handbook of Boolean Algebras, Vol. 1 (J. Donald Monk, ed.). North Holland, Amsterdam, 1989. 
MR 0991565[18] T.  Kowalski and H.  Ono: Residuated Lattices: An algebraic glimpse at logics without contraction. Preliminary report, 2000.
[19] F.  Maeda and S.  Maeda: 
Theory of Symmetric Lattices. Springer-Verlag, Berlin, 1970. 
MR 0282889