[2] G.  Chartrand, D. Erwin, M. Raines and P.  Zhang: 
The decomposition dimension of graphs. Graphs and Combin. 17 (2001), 599–605. 
DOI 10.1007/PL00007252 | 
MR 1876570[3] G.  Chartrand and L.  Lesniak: 
Graphs & Digraphs, third edition. Chapman & Hall, New York, 1996. 
MR 1408678[5] A.  Küngen and D. B.  West: Decomposition dimension of graphs and a union-free family of sets. Preprint. 
[7] M. A.  Johnson: Browsable structure-activity datasets. Preprint. 
[8] F.  Harary and R. A.  Melter: 
On the metric dimension of a graph. Ars Combin. 2 (1976), 191–195. 
MR 0457289[9] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: FIRE: A subroutine for fire protection network analysis. SAND 81-1261, Sandia National Laboratories, Albuquerque, 1981.
[10] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: Computing minimum cost fire protection. SAND 82-0809, Sandia National Laboratories, Albuquerque, 1982.
[11] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: 
A Boolean algebraic analysis of fire protection. Annals of Discrete Mathematics, Algebraic Structure in Operations Research, 1984, pp. 215–228. 
MR 0780023[13] P. J. Slater: 
Dominating and reference sets in graphs. J.  Math. Phys. Sci. 22 (1988), 445–455. 
MR 0966610[14] V.  Saenpholphat and P.  Zhang: 
Connected resolving decompositions in graphs. Math. Bohem. 128 (2003), 121–136. 
MR 1995567