| Title: | On connected resolving decompositions in graphs (English) | 
| Author: | Saenpholphat, Varaporn | 
| Author: | Zhang, Ping | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 54 | 
| Issue: | 3 | 
| Year: | 2004 | 
| Pages: | 681-696 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | For an ordered $k$-decomposition $\mathcal D = \lbrace G_1, G_2,\dots , G_k\rbrace $ of a connected graph  $G$ and an edge  $e$ of  $G$, the $\mathcal D$-code of  $e$ is the $k$-tuple $c_{\mathcal D}(e) = (d(e, G_1), d(e, G_2),\ldots , d(e, G_k))$, where $d(e, G_i)$ is the distance from  $e$ to  $G_i$. A decomposition $\mathcal D$ is resolving if every two distinct edges of  $G$ have distinct $\mathcal D$-codes. The minimum  $k$ for which $G$  has a resolving $k$-decomposition is its decomposition dimension  $\dim _d(G)$. A resolving decomposition  $\mathcal D$ of  $G$ is connected if each  $G_i$ is connected for $1 \le i \le k$. The minimum  $k$ for which $G$  has a connected resolving $k$-decomposition is its connected decomposition number  $\mathop {\mathrm cd}(G)$. Thus $2 \le \dim _d(G) \le \mathop {\mathrm cd}(G) \le m$ for every connected graph  $G$ of size $m \ge 2$. All nontrivial connected graphs of size  $m$ with connected decomposition number 2 or $m$ have been characterized. We present characterizations for connected graphs of size  $m$ with connected decomposition number  $m-1$ or $m-2$. It is shown that each pair  $s, t$ of rational numbers with $ 0 < s \le t \le 1$, there is a connected graph  $G$ of size  $m$ such that $\dim _d(G)/m = s$ and $\mathop {\mathrm cd}(G) / m = t$. (English) | 
| Keyword: | distance | 
| Keyword: | resolving decomposition | 
| Keyword: | connected resolving decomposition | 
| MSC: | 05C12 | 
| MSC: | 05C40 | 
| idZBL: | Zbl 1080.05508 | 
| idMR: | MR2086725 | 
| . | 
| Date available: | 2009-09-24T11:16:28Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127920 | 
| . | 
| Reference: | [1] J.  Bosak: Decompositions of Graphs.Kluwer Academic, Boston, 1990. Zbl 0701.05042, MR 1071373 | 
| Reference: | [2] G.  Chartrand, D. Erwin, M. Raines and P.  Zhang: The decomposition dimension of graphs.Graphs and Combin. 17 (2001), 599–605. MR 1876570, 10.1007/PL00007252 | 
| Reference: | [3] G.  Chartrand and L.  Lesniak: Graphs & Digraphs, third edition.Chapman & Hall, New York, 1996. MR 1408678 | 
| Reference: | [4] H.  Enomoto and T.  Nakamigawa: On the decomposition dimension of trees.Discrete Math. 252 (2002), 219–225. MR 1907757, 10.1016/S0012-365X(01)00454-X | 
| Reference: | [5] A.  Küngen and D. B.  West: Decomposition dimension of graphs and a union-free family of sets. Preprint.. | 
| Reference: | [6] M. A.  Johnson: Structure-activity maps for visualizing the graph variables arising in drug design.J.  Biopharm. Statist. 3 (1993), 203–236. Zbl 0800.92106, 10.1080/10543409308835060 | 
| Reference: | [7] M. A.  Johnson: Browsable structure-activity datasets. Preprint.. | 
| Reference: | [8] F.  Harary and R. A.  Melter: On the metric dimension of a graph.Ars Combin. 2 (1976), 191–195. MR 0457289 | 
| Reference: | [9] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: FIRE: A subroutine for fire protection network analysis.SAND 81-1261, Sandia National Laboratories, Albuquerque, 1981. | 
| Reference: | [10] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: Computing minimum cost fire protection.SAND 82-0809, Sandia National Laboratories, Albuquerque, 1982. | 
| Reference: | [11] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: A Boolean algebraic analysis of fire protection.Annals of Discrete Mathematics, Algebraic Structure in Operations Research, 1984, pp. 215–228. MR 0780023 | 
| Reference: | [12] P. J. Slater: Leaves of trees.Congr. Numer. 14 (1975), 549–559. Zbl 0316.05102, MR 0422062 | 
| Reference: | [13] P. J. Slater: Dominating and reference sets in graphs.J.  Math. Phys. Sci. 22 (1988), 445–455. MR 0966610 | 
| Reference: | [14] V.  Saenpholphat and P.  Zhang: Connected resolving decompositions in graphs.Math. Bohem. 128 (2003), 121–136. MR 1995567 | 
| . |