Previous |  Up |  Next


pseudo-effect algebra; pseudo $MV$-algebra; antilattice; prime ideal; automorphism; unital po-group; unital $\ell $-group
We give two variations of the Holland representation theorem for $\ell $-groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo $MV$-algebra can be represented as a pseudo-effect algebra or as a pseudo $MV$-algebra of automorphisms of some antilattice or of some linearly ordered set.
[1] A.  Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J.  Austral. Math. Soc. 72 (2002), 427–445. DOI 10.1017/S1446788700036806 | MR 1902211
[2] A.  Dvurečenskij: Ideals of pseudo-effect algebras and their applications. Tatra Mt. Math. Publ. 27 (2003), 45–65. MR 2026641
[3] A.  Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. MR 1861369
[4] A.  Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. I.  Basic properties. Inter. J.  Theor. Phys. 40 (2001), 685–701. MR 1831592
[5] A.  Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. II.  Group representations. Inter. J.  Theor. Phys. 40 (2001), 703–726. MR 1831593
[6] G.  Georgescu, A.  Iorgulescu: Pseudo-$MV$ algebras. Multi. Val. Logic 6 (2001), 95–135. MR 1817439
[7] A. M. W.  Glass: Polars and their applications in directed interpolation groups. Trans. Amer. Math. Soc. 166 (1972), 1–25. DOI 10.1090/S0002-9947-1972-0295991-3 | MR 0295991 | Zbl 0235.06004
[8] P.  Hájek: Observations on non-commutative fuzzy logic. Soft Computing 8 (2003), 38–43. DOI 10.1007/s00500-002-0246-y
[9] C.  Holland: The lattice-ordered group of automorphism of an ordered set. Michigan Math.  J. 10 (1963), 399–408. DOI 10.1307/mmj/1028998976 | MR 0158009 | Zbl 0116.02102
Partner of
EuDML logo