Article
Keywords:
functional; orthogonally additive functional; two-norm space; function of bounded variation; Henstock integral; Stieltjes integral
Summary:
In this paper we give a representation theorem for the orthogonally additive functionals on the space $BV$ in terms of a non-linear integral of the Henstock-Kurzweil-Stieltjes type.
References:
                        
[1] J. Dieudonné: 
Foundations of Modern Analysis. Academic Press, N. Y., 1960. 
MR 0120319[2] D. Franková: 
Regulated functions. Math. Bohem. 116 (1991), 20–59. 
MR 1100424[3] T. H. Hildebrandt: 
Linear continuous functionals on the space $(BV)$ with weak topologies. Proc. Amer. Math. Soc. 17 (1966), 658–664. 
MR 0193490 | 
Zbl 0152.13604[5] P. Y. Lee, R. Výborný: 
The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press, 2000. 
MR 1756319[7] M. Tvrdý: 
Linear bounded functionals on the space of regular regulated functions. Tatra Mt. Math. Publ. 8 (1996), 203–210. 
MR 1475282[8] A. Zygmund: 
Trigonometric Series I and II. Cambridge University Press, 1977. 
MR 0617944