[1] J. T. Beale, T. Kato, and A. Majda: 
Remarks on the breakdown of smooth solutions for the $3$-D Euler equations. Comm. Math. Phys. 94 (1984), 61–66. 
DOI 10.1007/BF01212349 | 
MR 0763762 
[2] B. Busnello, F. Flandoli, and M. Romito: 
A probabilistic representation for the vorticity of a 3D  viscous fluid and for general systems of parabolic equations. Preprint,  
http://arxiv.org/abs/math/0306075
 
[3] M. Cannone: 
Wavelets, paraproducts and Navier-Stokes. Diderot Editeur, Paris, 1995. (French) 
MR 1688096 | 
Zbl 1049.35517 
[4] A. Chorin: 
Vorticity and Turbulence. Appl. Math. Sci., Vol.  103. Springer-Verlag, New York, 1994. 
MR 1281384 
[6] P. Constantin, C. Foiaş: 
Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1988. 
MR 0972259 
[7] C. R. Doering, J. D. Gibbon: 
Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995. 
MR 1325465 
[9] C. Foiaş, C. Guillopé, and R. Temam: 
New a priori estimates for Navier-Stokes equations in dimension  $3$. Commun. Partial Differ. Equations 6 (1981), 329–359. 
DOI 10.1080/03605308108820180 | 
MR 0607552 
[10] Z. Grujić, I. Kukavica: 
Space analyticity for the Navier-Stokes and related equations with initial data in  $L^p$. J.  Funct. Anal. 152 (1998), 447–466. 
DOI 10.1006/jfan.1997.3167 | 
MR 1607936 
[11] I. Karatzas, S. E. Shreve: 
Brownian Motion and Stochastic Calculus, second edition. Graduate Texts in Mathematics Vol.  113. Springer-Verlag, New York, 1991. 
MR 1121940 
[13] M. A. Krasnosel’skiĭ, Ya. B. Rutitskiĭ: 
Convex Functions and Orlicz Spaces. Translated from the first Russian edition. P.  Noordhoff, Groningen, 1961. 
MR 0126722 
[14] P. G. Lemarié-Rieusset: 
Recent Developments in the Navier-Stokes Problem. Chapman and Hall/CRC, Boca Raton, 2002. 
MR 1938147 | 
Zbl 1034.35093 
[15] P. G. Lemarié-Rieusset: 
Further remarks on the analyticity of mild solutions for the Navier-Stokes equations in  $\mathbb{R}^3$. C. R. Math. Acad. Sci. Paris 338 (2004), 443–446. (French) 
DOI 10.1016/j.crma.2004.01.015 | 
MR 2057722 
[16] S. J. Montgomery-Smith, M. Pokorný: 
A counterexample to the smoothness of the solution to an equation arising in fluid mechanics. Comment. Math. Univ. Carolin. 43 (2002), 61–75. 
MR 1903307 
[18] V. Scheffer: 
Turbulence and Hausdorff Dimension. Turbulence and Navier-Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lect. Notes Math. Vol.  565, Springer-Verlag, Berlin, 1976, pp. 174–183. 
MR 0452123 | 
Zbl 0394.76029 
[20] H. Sohr: 
Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math.  Z. 184 (1983), 359–375. 
MR 0716283 | 
Zbl 0506.35084 
[21] R. Temam: 
Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition. Applied Mathematical Sciences Vol.  68. Springer-Verlag, New York, 1997. 
MR 1441312