Full entry |
PDF
(1.2 MB)
Feedback

discrete event systems; order-preserving homogeneous maps

References:

[1] Burbanks A. D., Nussbaum R. D., Sparrow C. T.: **Extension of order-preserving maps on a cone**. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 35–59 MR 1960046 | Zbl 1048.47040

[2] Burbanks A. D., Sparrow C. T.: **All Monotone Homogeneous Functions (on the Positive Cone) Admit Continuous Extension**. Technical Report No. 1999-13, Statistical Laboratory, University of Cambridge 1999

[3] Crandall M. G., Tartar L.: **Some relations between nonexpansive and order preserving mappings**. Proc. Amer. Math. Soc. 78 (1980), 385–390 DOI 10.1090/S0002-9939-1980-0553381-X | MR 0553381 | Zbl 0449.47059

[4] Gaubert S., Gunawardena J.: **A Nonlinear Hierarchy for Discrete Event Systems**. Technical Report No. HPL-BRIMS-98-20, BRIMS, Hewlett–Packard Laboratories, Bristol 1998

[5] Gunawardena J., Keane M.: **On the Existence of Cycle Times for Some Nonexpansive Maps**. Technical Report No. HPL-BRIMS-95-003, BRIMS, Hewlett–Packard Laboratories, Bristol 1995

[6] Nussbaum R. D.: **Eigenvectors of Nonlinear Positive Operators and the Linear Krein–Rutman Theorem (Lecture Notes in Mathematics 886)**. Springer Verlag, Berlin 1981, pp. 309–331 MR 0643014

[7] Nussbaum R. D.: **Finsler structures for the part-metric and Hilbert’s projective metric, and applications to ordinary differential equations**. Differential and Integral Equations 7 (1994), 1649–1707 MR 1269677 | Zbl 0844.58010

[8] Riesz F., Sz.-Nagy B.: **Functional Analysis**. Frederick Ungar Publishing Company, New York 1955 MR 0071727 | Zbl 0732.47001

[9] Thompson A. C.: **On certain contraction mappings in a partially ordered vector space**. Proc. Amer. Math. Soc. 14 (1963), 438–443 MR 0149237 | Zbl 0147.34903