[2] Adams, D. R., Hedberg, L. I.: 
Function Spaces and Potential Theory. Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1995). 
MR 1411441 | 
Zbl 0834.46021[3] Almeida, A., Hasanov, J., Samko, S. G.: 
Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15 (2008), 195-208. 
MR 2428465 | 
Zbl 1263.42002[4] Bojarski, B., Hajłasz, P.: 
Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106 (1993), 77-92. 
MR 1226425 | 
Zbl 0810.46030[5] Chiarenza, F., Frasca, M.: 
Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. 
MR 0985999 | 
Zbl 0717.42023[6] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: 
The maximal function on variable $L^{p}$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238; Corrections to ``The maximal function on variable $L^{p}$ spaces'' Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249. 
MR 2041952 | 
Zbl 1064.42500[7] Diening, L.: 
Maximal function in generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. 
MR 2057643[9] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: 
Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). 
MR 2790542 | 
Zbl 1222.46002[10] Edmunds, D. E., Gurka, P., Opic, B.: 
Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 (1995), 151-181. 
MR 1347439 | 
Zbl 0829.47024[11] Edmunds, D. E., Gurka, P., Opic, B.: 
Sharpness of embeddings in logarithmic Besselpotential spaces. Proc. R. Soc. Edinb., Sect. A 126 (1996), 995-1009. 
MR 1415818[13] Edmunds, D. E., Krbec, M.: 
Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119-128. 
MR 1331250 | 
Zbl 0835.46027[16] Fiorenza, A., Sbordone, C.: 
Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$. Stud. Math. 127 (1998), 223-231. 
MR 1489454 | 
Zbl 0891.35039[17] Futamura, T., Mizuta, Y.: 
Continuity properties of Riesz potentials for function in $L^{p(\cdot)}$ of variable exponent. Math. Inequal. Appl. 8 (2005), 619-631. 
MR 2174890[19] Futamura, T., Mizuta, Y., Shimomura, T.: 
Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. 
MR 2248828 | 
Zbl 1100.31002[21] Guliyev, V. S., Hasanov, J. J., Samko, S. G.: 
Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces. Problems in mathematical analysis 50. J. Math. Sci. (N.Y.) 170 (2010), 423-443. 
DOI 10.1007/s10958-010-0095-7 | 
MR 2839874[24] Hajłasz, P., Koskela, P.: 
Sobolev met Poincaré. Mem. Am. Math. Soc. 688 (2000), 101 pages. 
MR 1683160 | 
Zbl 0954.46022[25] Harjulehto, P., Hästö, P., Pere, M.: 
Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2004/2005), 87-104. 
MR 2126796[30] Kokilashvili, V., Meskhi, A.: 
Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure. Complex Var. Elliptic Equ. 55 (2010), 923-936. 
MR 2674873 | 
Zbl 1205.26014[31] Kokilashvili, V., Samko, S. G.: 
Boundedness of weighted singular integral operators in grand Lebesgue spaces. Georgian Math. J. 18 (2011), 259-269. 
MR 2805980 | 
Zbl 1239.42014[32] Meskhi, A.: 
Maximal functions, potentials and singular integrals in grand Morrey spaces. Complex Var. Elliptic Equ. 56 (2011), 1003-1019. 
MR 2838234 | 
Zbl 1261.42022[33] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: 
Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744. 
DOI 10.2969/jmsj/06230707 | 
MR 2648060 | 
Zbl 1200.26007[34] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: 
Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents. Complex Var. Elliptic Equ. 56 (2011), 671-695. 
MR 2832209 | 
Zbl 1228.31004[42] Sbordone, C.: 
Grand Sobolev spaces and their application to variational problems. Matematiche 51 (1996), 335-347. 
MR 1488076 | 
Zbl 0915.46030[43] Serrin, J.: 
A remark on Morrey potential. Control Methods in PDE-Dynamical Systems. AMS-IMS-SIAM joint summer research conference, 2005 F. Ancona et al. Contemporary Mathematics 426 American Mathematical Society, Providence (2007), 307-315. 
MR 2311532[44] Stein, E. M.: 
Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). 
MR 0290095 | 
Zbl 0207.13501[45] Trudinger, N. S.: 
On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-483. 
MR 0216286 | 
Zbl 0163.36402