[1] Boza, L., Fedriani, E. M., Núñez, J.: The relation between oriented pseudo-graphs with multiple edges and some Lie algebras. Actas del IV Encuentro Andaluz de Matemática Discreta (2005), 99-104 Spanish.
[2] Carriazo, A., Fernández, L. M., Núñez, J.: 
Combinatorial structures associated with Lie algebras of finite dimension. Linear Algebra Appl. 389 (2004), 43-61. 
MR 2080394 | 
Zbl 1053.05059[4] Ceballos, M., Núñez, J., Tenorio, Á. F.: 
Study of Lie algebras by using combinatorial structures. Linear Algebra Appl. 436 (2012), 349-363. 
MR 2854876 | 
Zbl 1276.17010[5] Ceballos, M., Núñez, J., Tenorio, A. F.: 
Combinatorial structures and Lie algebras of upper triangular matrices. Appl. Math. Lett. 25 (2012), 514-519. 
DOI 10.1016/j.aml.2011.09.049 | 
MR 2856025[7] Fernández, L. M., Martín-Martínez, L.: 
Lie algebras associated with triangular configurations. Linear Algebra Appl. 407 (2005), 43-63. 
MR 2161914 | 
Zbl 1159.17302[8] Gross, J. L., Yellen, J.: 
Handbook of Graph Theory. Discrete Mathematics and its Applications CRC Press, Boca Raton (2004). 
MR 2035186 | 
Zbl 1036.05001[9] Hamelink, R. C.: 
Graph theory and Lie algebra. Many Facets of Graph Theory, Proc. Conf. Western Michigan Univ., Kalamazoo/Mi. 1968 Lect. Notes Math. 110 149-153 Springer, Berlin (1969). 
DOI 10.1007/BFb0060113 | 
MR 0256910 | 
Zbl 0187.45504[10] Núñez, J., Pacheco, A., Villar, M. T.: 
Discrete mathematics applied to the treatment of some Lie theory problems. Sixth Conference on Discrete Mathematics and Computer Science Univ. Lleida, Lleida (2008), 485-492 Spanish (2008), 485-492. 
MR 2523385[11] Núñez, J., Pacheco, A. M., Villar, M. T.: 
Study of a family of Lie algebra over $\mathbb Z/3\mathbb Z$. Int. J. Math. Stat. 7 (2010), 40-45. 
MR 2755406[12] Patera, J., Zassenhaus, H.: 
Solvable Lie algebras of dimension $\leq 4$ over perfect fields. Linear Algebra Appl. 142 (1990), 1-17. 
MR 1077969