[1] Avdonin, S. A., Ivanov, S. A.: 
Families of Exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press Cambridge (1995). 
MR 1366650 | 
Zbl 0866.93001[2] Ball, J. M., Slemrod, M.: 
Nonharmonic Fourier series and the stabilization of distributed semilinear control systems. Commun. Pure Appl. Math. 32 (1979), 555-587. 
DOI 10.1002/cpa.3160320405 | 
MR 0528632[5] Edward, J., Tebou, L.: 
Internal null-controllability for a structurally damped beam equation. Asymptotic Anal. 47 (2006), 55-83. 
MR 2224406 | 
Zbl 1098.35096[6] Fattorini, H. O., Russell, D. L.: 
Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Q. Appl. Math. 32 (1974), 45-69. 
DOI 10.1090/qam/510972 | 
MR 0510972 | 
Zbl 0281.35009[8] Ignat, L. I., Zuazua, E.: 
Dispersive properties of numerical schemes for nonlinear Schrödinger equations. Foundations of Computational Mathematics; Santander, Spain, 2005, London Math. Soc. Lecture Note Ser. 331 Cambridge University Press, Cambridge (2006), 181-207 L. M. Pardo et al. 
MR 2277106 | 
Zbl 1106.65321[11] Komornik, V., Loreti, P.: 
Fourier Series in Control Theory. Springer Monographs in Mathematics Springer, New York (2005). 
MR 2114325 | 
Zbl 1094.49002[13] Lions, J.-L.: 
Exact controllability, perturbations and stabilization of distributed systems. Volume 1: Exact controllability. Research in Applied Mathematics 8 Masson, Paris French (1988). 
MR 0963060[14] Micu, S., RovenĹŁa, I.: 
Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM, Control Optim. Calc. Var. 18 (2012), 277-293. 
DOI 10.1051/cocv/2010055 | 
MR 2887936[16] Young, R. M.: 
An Introduction to Nonharmonic Fourier Series. Pure and Applied Mathematics 93 Academic Press, New York (1980). 
MR 0591684 | 
Zbl 0493.42001[17] Zabczyk, J.: 
Mathematical Control Theory: An Introduction. Systems & Control: Foundations & Applications Birkhäuser, Boston (1992). 
MR 1193920 | 
Zbl 1071.93500