Previous |  Up |  Next

Article

Title: Uniform controllability for the beam equation with vanishing structural damping (English)
Author: Bugariu, Ioan Florin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 869-881
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter $\varepsilon \in (0,1)$. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls $v_{\varepsilon }$ as $\varepsilon $ goes to zero. It is shown that for any time $T$ sufficiently large but independent of $\varepsilon $ and for each initial data in a suitable space there exists a uniformly bounded family of controls $(v_\varepsilon )_\varepsilon $ in $L^2(0, T)$ acting on the extremity $x = \pi $. Any weak limit of this family is a control for the beam equation. This analysis is based on Fourier expansion and explicit construction and evaluation of biorthogonal sequences. This method allows us to measure the magnitude of the control needed for each eigenfrequency and to show their uniform boundedness when the structural damping tends to zero. (English)
Keyword: beam equation
Keyword: null-controllability
Keyword: structural damping
Keyword: moment problem
Keyword: biorthogonals
MSC: 30E05
MSC: 35L35
MSC: 35Q74
MSC: 58J45
MSC: 74K20
MSC: 93B05
idZBL: Zbl 06433701
idMR: MR3304785
DOI: 10.1007/s10587-014-0140-7
.
Date available: 2015-02-09T17:21:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144147
.
Reference: [1] Avdonin, S. A., Ivanov, S. A.: Families of Exponentials. The method of moments in controllability problems for distributed parameter systems.Cambridge University Press Cambridge (1995). Zbl 0866.93001, MR 1366650
Reference: [2] Ball, J. M., Slemrod, M.: Nonharmonic Fourier series and the stabilization of distributed semilinear control systems.Commun. Pure Appl. Math. 32 (1979), 555-587. MR 0528632, 10.1002/cpa.3160320405
Reference: [3] DiPerna, R. J.: Convergence of approximate solutions to conservation laws.Arch. Ration. Mech. Anal. 82 (1983), 27-70. Zbl 0519.35054, MR 0684413, 10.1007/BF00251724
Reference: [4] Edward, J.: Ingham-type inequalities for complex frequencies and applications to control theory.J. Math. Anal. Appl. 324 (2006), 941-954. Zbl 1108.26019, MR 2265092, 10.1016/j.jmaa.2005.12.074
Reference: [5] Edward, J., Tebou, L.: Internal null-controllability for a structurally damped beam equation.Asymptotic Anal. 47 (2006), 55-83. Zbl 1098.35096, MR 2224406
Reference: [6] Fattorini, H. O., Russell, D. L.: Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations.Q. Appl. Math. 32 (1974), 45-69. Zbl 0281.35009, MR 0510972, 10.1090/qam/510972
Reference: [7] Fattorini, H. O., Russell, D. L.: Exact controllability theorems for linear parabolic equations in one space dimension.Arch. Ration. Mech. Anal. 43 (1971), 272-292. Zbl 0231.93003, MR 0335014, 10.1007/BF00250466
Reference: [8] Ignat, L. I., Zuazua, E.: Dispersive properties of numerical schemes for nonlinear Schrödinger equations.Foundations of Computational Mathematics; Santander, Spain, 2005, London Math. Soc. Lecture Note Ser. 331 Cambridge University Press, Cambridge (2006), 181-207 L. M. Pardo et al. Zbl 1106.65321, MR 2277106
Reference: [9] Ignat, L. I., Zuazua, E.: Dispersive properties of a viscous numerical scheme for the Schrödinger equation.C. R., Math., Acad. Sci. Paris 340 (2005), 529-534. Zbl 1063.35016, MR 2135236, 10.1016/j.crma.2005.02.024
Reference: [10] Ingham, A. E.: Some trigonometrical inequalities with applications to the theory of series.Math. Z. 41 (1936), 367-379. Zbl 0014.21503, MR 1545625, 10.1007/BF01180426
Reference: [11] Komornik, V., Loreti, P.: Fourier Series in Control Theory.Springer Monographs in Mathematics Springer, New York (2005). Zbl 1094.49002, MR 2114325
Reference: [12] Lebeau, G., Zuazua, E.: Null-controllability of a system of linear thermoelasticity.Arch. Ration. Mech. Anal. 141 (1998), 297-329. Zbl 1064.93501, MR 1620510, 10.1007/s002050050078
Reference: [13] Lions, J.-L.: Exact controllability, perturbations and stabilization of distributed systems. Volume 1: Exact controllability.Research in Applied Mathematics 8 Masson, Paris French (1988). MR 0963060
Reference: [14] Micu, S., RovenĹŁa, I.: Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity.ESAIM, Control Optim. Calc. Var. 18 (2012), 277-293. MR 2887936, 10.1051/cocv/2010055
Reference: [15] Seidman, T. I., Avdonin, S. A., Ivanov, S. A.: The `window problem' for series of complex exponentials.J. Fourier Anal. Appl. 6 (2000), 233-254. Zbl 0960.42012, MR 1755142, 10.1007/BF02511154
Reference: [16] Young, R. M.: An Introduction to Nonharmonic Fourier Series.Pure and Applied Mathematics 93 Academic Press, New York (1980). Zbl 0493.42001, MR 0591684
Reference: [17] Zabczyk, J.: Mathematical Control Theory: An Introduction.Systems & Control: Foundations & Applications Birkhäuser, Boston (1992). Zbl 1071.93500, MR 1193920
.

Files

Files Size Format View
CzechMathJ_64-2014-4_1.pdf 290.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo