Previous |  Up |  Next

Article

Keywords:
G-matrix; $J$-orthogonal matrix; Cauchy matrix; sign pattern matrix
Summary:
A real matrix $A$ is a G-matrix if $A$ is nonsingular and there exist nonsingular diagonal matrices $D_1$ and $D_2$ such that $A^{\rm -T}= D_1 AD_2$, where $A^{\rm -T}$ denotes the transpose of the inverse of $A$. Denote by $J = {\rm diag}(\pm 1)$ a diagonal (signature) matrix, each of whose diagonal entries is $+1$ or $-1$. A nonsingular real matrix $Q$ is called $J$-orthogonal if $Q^{\rm T}J Q=\nobreak J$. Many connections are established between these matrices. In particular, a matrix $A$ is a G-matrix if and only if $A$ is diagonally (with positive diagonals) equivalent to a column permutation of a $J$-orthogonal matrix. An investigation into the sign patterns of the $J$-orthogonal matrices is initiated. It is observed that the sign patterns of the G-matrices are exactly the column permutations of the sign patterns of the $J$-orthogonal matrices. Some interesting constructions of certain $J$-orthogonal matrices are exhibited. It is shown that every symmetric staircase sign pattern matrix allows a $J$-orthogonal matrix. Sign potentially $J$-orthogonal conditions are also considered. Some examples and open questions are provided.
References:
[1] Beasley, L. B., Scully, D. J.: Linear operators which preserve combinatorial orthogonality. Linear Algebra Appl. 201 (1994), 171-180. MR 1274886 | Zbl 0802.05016
[2] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). MR 1130611 | Zbl 0746.05002
[3] Brualdi, R. A., Shader, B. L.: Matrices of Sign-Solvable Linear Systems. Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). MR 1358133 | Zbl 0833.15002
[4] Della-Dora, J.: Numerical linear algorithms and group theory. Linear Algebra Appl. 10 (1975), 267-283. DOI 10.1016/0024-3795(75)90074-9 | MR 0383721 | Zbl 0308.65025
[5] Elsner, L.: On some algebraic problems in connection with general eigenvalue algorithms. Linear Algebra Appl. 26 (1979), 123-138. DOI 10.1016/0024-3795(79)90175-7 | MR 0535682 | Zbl 0412.15019
[6] Eschenbach, C. A., Hall, F. J., Harrell, D. L., Li, Z.: When does the inverse have the same sign pattern as the transpose?. Czech. Math. J. 49 (1999), 255-275. DOI 10.1023/A:1022496101277 | MR 1692477 | Zbl 0954.15013
[7] Fiedler, M.: Notes on Hilbert and Cauchy matrices. Linear Algebra Appl. 432 (2010), 351-356. MR 2566483 | Zbl 1209.15029
[8] Fiedler, M.: Theory of Graphs and Its Applications. Proc. Symp., Smolenice, 1963 Publishing House of the Czechoslovak Academy of Sciences Praha (1964). MR 0172259
[9] Fiedler, M., Hall, F. J.: G-matrices. Linear Algebra Appl. 436 (2012), 731-741. MR 2854903 | Zbl 1237.15024
[10] Fiedler, M., Markham, T. L.: More on G-matrices. Linear Algebra Appl. 438 (2013), 231-241. MR 2993378 | Zbl 1255.15035
[11] Hall, F. J., Li, Z.: Sign pattern matrices. Handbook of Linear Algebra Chapman and Hall/CRC Press Boca Raton (2013).
[12] Higham, N. J.: $J$-orthogonal matrices: properties and generation. SIAM Rev. 45 (2003), 504-519. DOI 10.1137/S0036144502414930 | MR 2046506 | Zbl 1034.65026
[13] Rozložník, M., Okulicka-Dłużewska, F., Smoktunowicz, A.: Cholesky-like factorization of symmetric indefinite matrices and orthogonalization with respect to bilinear forms. SIAM J. Matrix Anal. Appl. 36 (2015), 727-751. DOI 10.1137/130947003 | MR 3355770 | Zbl 1317.65105
[14] Waters, C.: Sign patterns that allow orthogonality. Linear Algebra Appl. 235 (1996), 1-13. DOI 10.1016/0024-3795(94)00098-0 | MR 1374247
Partner of
EuDML logo