Previous |  Up |  Next


fractional complex networks; delays; Lyapunov-Krasovskii theorem; synchronization
The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function $V$ and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.
[1] Ahmad, B., Ntouyas, S. K., Tariboon, J., Alsaedi, A., Alsulami, H. H.: Impulsive fractional q-integro-difference equations with separated boundary conditions. Appl. Math. Comput. 281 (2016), 199-213. DOI 10.1016/j.amc.2016.01.051 | MR 3466095
[2] An, F., Gao, X. Y., Guan, J. H., Li, H. J., Liu, Q.: An evolution analysis of executive-based listed company relationships using complex networks. Physica A: Statist. Mechanics and Its Appl. 447 (2016), 276-285. DOI 10.1016/j.physa.2015.12.050
[3] Aguila-Camacho, N., Duarte-Mermoud, M. A., Gallegos, J. A.: Lyapunov functions for fractional order systems. Commu. Nonlinear Science Numer. Simul. 19 (2014), 2951-2957. DOI 10.1016/j.cnsns.2014.01.022 | MR 3182869
[4] Baleanu, D., Ranjbar, A., Sadati, S. J., Delavari, R. H., Abdeljawad, T., Gejji, V.: Lyapunov-Krasovskii stability theorem for fractional systems with delay. Romanian J. Phys. 56 (2011), 636-643. MR 2821032
[5] Chen, Y., Lü, J.: Delay-induced discrete-time consensus. Automatica 85 (2017), 356-361. DOI 10.1016/j.automatica.2017.07.059 | MR 3712878
[6] Chen, L. P., Pan, W., Wu, R. C., Machado, J. A. T., Lopes, A. M.: Design and implementation of grid multi-scroll fractional-order chaotic attractors. Chaos 26 (2016), 8, 084303. DOI 10.1063/1.4958717 | MR 3522604
[7] Dai, H., Si, G. Q., Jia, L. X., Zhang, Y. B.: Adaptive generalized function matrix projective lag synchronization between fractional-order and integer-order complex networks with delayed coupling and different dimensions. Physica Scripta 88 (2013), 5, 055006. DOI 10.1088/0031-8949/88/05/055006
[8] David, S. A., Machado, J. A. T., Quintino, D. D., Balthazar, J. M.: Partial chaos suppression in a fractional order macroeconomic model. Math. Computers Simul. 122 (2016), 55-68. DOI 10.1016/j.matcom.2015.11.004 | MR 3436941
[9] Hu, J. B., Lu, G. P., Zhao, L. D.: Synchronization of fractional chaotic complex networks with distributed delays. Nonlinear dynamics 83 (2016), 1101-1108. DOI 10.1007/s11071-015-2390-9 | MR 3435929
[10] Hu, J. B., Wei, H., Zhao, L. D.: Synchronization of fractional-order chaotic systems with multiple delays by a new approach. Kybernetika 51 (2015), 1068-1083. DOI 10.14736/kyb-2015-6-1068 | MR 3453686
[11] Li, B. C.: Pinning adaptive hybrid synchronization of two general complex dynamical networks with mixed coupling. Appl. Math. Modell. 40 (2016), 2983-2998. DOI 10.1016/j.apm.2015.09.092 | MR 3454505
[12] Li, Y., Wu, X., Lu, J. A., Lü, J.: Synchronizability of duplex networks. IEEE Trans. Circuits Systems II Express Briefs 63 (2016), 206-210. DOI 10.1109/tcsii.2015.2468924
[13] Liang, S., Wu, R. C., Chen, L. P.: Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Physica a-Statistical Mechanics and Its Applications 444(2016), 49-62. DOI 10.1016/j.physa.2015.10.011 | MR 3428092
[14] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Science China Technol. Sci. 59 (2016), 22-32. DOI 10.1007/s11431-015-5989-7
[15] Liu, K., Zhu, H., Lü, J.: Cooperative Stabilization of a class of LTI plants with distributed observers. IEEE Trans. Circuits Systems I Regular Papers 64(2017), 1891-1902. DOI 10.1109/tcsi.2017.2675922 | MR 3671833
[16] Rivero, M., Rogosin, S. V., Machado, J. A. T., Trujillo, J. J.: Stability of fractional order systems. Math. Problems Engrg. 2013 (2013), 1-14. MR 3062648
[17] Spasic, D. T., Kovincic, N. I., Dankuc, D. V.: A new material identification pattern for the fractional kelvin-zener model describing biomaterials and human tissues. Comm. Nonlinear Sci. Numer. Simul. 37 (2016), 193-199. DOI 10.1016/j.cnsns.2016.01.004 | MR 3466784
[18] Tang, H. W., Chen, L., Lu, J. A., Tse, C. K.: Adaptive synchronization between two complex networks with nonidentical topological structures. Physica a-Statistical Mechanics and Its Applications 387 (2008) 5623-5630. DOI 10.1016/j.physa.2008.05.047
[19] Tang, Y., Gao, H. J., Kurths, J.: Distributed robust synchronization of dynamical networks with stochastic coupling. IEEE Trans. Circuits Systems I-Regular Papers, 61 (2014), 1508-1519. DOI 10.1109/tcsi.2013.2285699 | MR 3200565
[20] Uncini, A., Piazza, F.: Blind signal processing by complex domain adaptive spline neural networks. IEEE Trans. Neural Networks 14 (2003), 399-412. DOI 10.1109/tnn.2003.809411
[21] Wang, Y., Li, T. Z.: Synchronization of fractional order complex dynamical networks. Physica a-Statistical Mechanics and Its Applications 428 (2015), 1-12. DOI 10.1016/j.physa.2015.02.051 | MR 3322873
[22] Wang, J. W., Ma, Q. H., Chen, A. M., Liang, Z. P.: Pinning synchronization of fractional-order complex networks with lipschitz-type nonlinear dynamics. ISA Trans. 57 (2015), 111-116. DOI 10.1016/j.isatra.2015.02.002
[23] Wang, F., Yang, Y. Q., Hu, A. H., Xu, X. Y.: Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dynamics 82 (2015), 1979-1987. DOI 10.1007/s11071-015-2292-x | MR 3422995
[24] Wang, Z., Huang, X., Li, Y. X., Song, X. N.: A new image encryption algorithm based on the fractional-order hyperchaotic lorenz system. Chinese Physics B 22 (2013), 1, 010504. DOI 10.1088/1674-1056/22/1/010504
[25] Wang, F., Yang, Y. Q., Hu, M. F., Xu, X. Y.: Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control. Physica a-Statistical Mechanics and Its Applications 434 (2015), 134-143. DOI 10.1016/j.physa.2015.03.089 | MR 3349715
[26] Wu, G. C., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics 80 (2015), 1697-1703. DOI 10.1007/s11071-014-1250-3 | MR 3343425
[27] Wu, G. C., Baleanu, D., Deng, Z. G., Zeng, S. D.: Lattice fractional diffusion equation in terms of a riesz-caputo difference. Physica a-Statistical Mechanics and Its Applications 438 (2015), 335-339. DOI 10.1016/j.physa.2015.06.024 | MR 3384291
[28] Yi, J. W., Wang, Y. W., Xiao, J. W., Huang, Y. H.: Synchronisation of complex dynamical networks with additive stochastic time-varying delays. Int. J. Systems Sci. 47 (2016), 1221-1229. DOI 10.1080/00207721.2014.919426 | MR 3441585
[29] Zhang, W. B., Tang, Y., Miao, Q. Y., Fang, J. A.: Synchronization of stochastic dynamical networks under impulsive control with time delays. IEEE Trans. Neural Networks Learning Systems 25 (2014), 1758-1768. DOI 10.1109/tnnls.2013.2294727
[30] Zhao, L. D., Hu, J. B., Fang, J. A., Cui, W. X., Xu, Y. L., Wang, X.: Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. ISA Trans. 52 (2013),738-743. DOI 10.1016/j.isatra.2013.07.001
[31] Zhou, W. N., Dai, A. D., Yang, J., Liu, H. S., Liu, X. L.: Exponential synchronization of markovian jumping complex dynamical networks with randomly occurring parameter uncertainties. Nonlinear Dynamics 78(2014), 15-27. DOI 10.1007/s11071-014-1418-x | MR 3266422
[32] Zhou, Y., Ionescu, C., Machado, J. A. T.: Fractional dynamics and its applications. Nonlinear Dynamics 80 (2015), 1661-1664. DOI 10.1007/s11071-015-2069-2 | MR 3343421
[33] Zhou, J., Chen, J., Lu, J. A., Lü, J.: On applicability of auxiliary system approach to detect generalized synchronization in complex networks. IEEE Trans. Automat. Control 62 (2017), 3468-3473. DOI 10.1109/tac.2016.2615679 | MR 3669467
Partner of
EuDML logo