[1] Adams R. A.: 
Sobolev Spaces. Pure and Applied Mathematics, 65, Academic Press, New York, 1975. 
MR 0450957 | 
Zbl 1098.46001[2] Ambrosio L., Fusco N., Pallara D.: 
Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 224, The Clarendon Press, Oxford University Press, New York, 2000. 
Zbl 0957.49001[3] Beck L., Bulíček M., Málek J., Süli E.: 
On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth. Arch. Ration. Mech. Anal. 225 (2017), no. 2, 717–769. 
DOI 10.1007/s00205-017-1113-4[4] Beck L., Bulíček M., Maringová E.: 
Globally Lipschitz minimizers for variational problems with linear growth. ESAIM Control Optim. Calc. Var. 24 (2018), no. 4, 1395–1403. 
DOI 10.1051/cocv/2017065[5] Beck L., Schmidt T.: On the Dirichlet problem for variational integrals in $BV$. J. Reine Angew. Math. 674 (2013), 113–194.
[6] Beck L., Schmidt T.: 
Convex duality and uniqueness for BV-minimizers. J. Funct. Anal. 268 (2015), no. 10, 3061–3107. 
DOI 10.1016/j.jfa.2015.03.006[7] Bildhauer M.: 
Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003. 
DOI 10.1007/b12308[8] Bildhauer M., Fuchs M.: On a class of variational integrals with linear growth satisfying the condition of $\mu$-ellipticity. Rend. Mat. Appl. 22 (2002), no. 7, 249–274.
[9] Bildhauer M., Fuchs M.: A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ 41, 5–17, 234; reprinted in J. Math. Sci. (N.Y.) 178 (2011), no. 3, 235–242.
[10] Bildhauer M., Fuchs M.: Some remarks on the (non-)attainment of the boundary data for variational problems in the space BV. J. Convex Anal. 25 (2018), no. 1, 219–223.
[11] Bulíček M., Málek J., Rajagopal K., Süli E.: 
On elastic solids with limiting small strain: modelling and analysis. EMS Surv. Math. Sci. 1 (2014), no. 2, 283–332. 
DOI 10.4171/EMSS/7[12] Bulíček M., Málek J., Rajagopal K. R., Walton J. R.: 
Existence of solutions for the anti-plane stress for a new class of  “strain-limiting”  elastic bodies. Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2115–2147. 
DOI 10.1007/s00526-015-0859-5[13] Bulíček M., Málek J., Süli E.: 
Analysis and approximation of a strain-limiting nonlinear elastic model. Math. Mech. Solids 20 (2015), no. 1, 92–118. 
DOI 10.1177/1081286514543601[14] Bulíček M., Maringová E., Stroffolini B., Verde A.: A boundary regularity result for minimizers of variational integrals with nonstandard growth. Nonlinear Anal. 177 (2018), part A, 153–168.
[15] Buttazzo G., Giaquinta M., Hildebrandt S.: One-dimensional Variational Problems. An Introduction, Oxford Lecture Series in Mathematics and Its Applications, 15, The Clarendon Press, Oxford University Press, New York, 1998.
[16] Finn R.: 
Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature. J. Analyse Math. 14 (1965), 139–160. 
DOI 10.1007/BF02806384[17] Giaquinta M., Modica G., Souček J.: Functionals with linear growth in the calculus of variations. I. Comment. Math. Univ. Carolin. 20 (1979), no. 1, 143–156.
[18] Giaquinta M., Modica G., Souček J.: Functionals with linear growth in the calculus of variations. II. Comment. Math. Univ. Carolin. 20 (1979), no. 1, 157–172.
[19] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations. I. Cartesian Currents. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 37, Springer, Berlin, 1998.
[20] Giaquinta M., Modica G., Souček, J.: Cartesian Currents in the Calculus of Variations. II. Cartesian Currents. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 38, Springer, Berlin, 1998.
[21] Giusti E.: 
Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80, Birkhäuser, Basel, 1984. 
Zbl 0825.49059[23] Reshetnyak Y.: Weak convergence of completely additive vector functions on a set. Sibirsk. Maz. Ž. 9 (1968), 1386–1394; English translation: Sib. Math. J. 9 (1968), 1039–1045.