[2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space. Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
[3] Brown M.: A countable connected Hausdorff space. Bull. Amer. Math. Soc. 59 (1953), Abstract #423, page 367.
[5] Engelking R.: 
General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. 
MR 1039321 | 
Zbl 0684.54001[6] Gauss C. F.: 
Disquisitiones Arithmeticae. Springer, New York, 1986. 
Zbl 1167.11001[8] Golomb S.: Arithmetica topologica. in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179–186 (Italian).
[9] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, 84, Springer, New York, 1990.
[10] Jones G. A., Jones J. M.: Elementary Number Theory. Springer Undergraduate Mathematics Series, Springer, London, 1998.
[11] Knopfmacher J., Porubský Š.: Topologies related to arithmetical properties of integral domains. Exposition. Math. 15 (1997), no. 2, 131–148.
[12] Robinson D. J. S.: 
A Course in the Theory of Groups. Graduate Texts in Mathematics, 80, Springer, New York, 1996. 
Zbl 0836.20001[13] Spirito D.: 
The Golomb topology on a Dedekind domain and the group of units of its quotients. Topology Appl. 273 (2020), 107101, 20 pages. 
DOI 10.1016/j.topol.2020.107101[15] Steen L. A., Seebach J. A., Jr.: 
Counterexamples in Topology. Dover Publications, Mineola, New York, 1995. 
Zbl 0386.54001[16] Szczuka P.: 
The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies. Demonstratio Math. 43 (2010), no. 4, 899–909. 
DOI 10.1515/dema-2010-0416[17] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies. Demonstratio Math. 46 (2013), no. 2, 429–435.