[1] Banaschewski B.: 
Algebraic closure without choice. Z. Math. Logik Grundlag. Math. 38 (1992), no. 4, 383–385. 
DOI 10.1002/malq.19920380136[3] Dilworth R. P.: 
A decomposition theorem for partially ordered sets. Ann. of Math. (2) 51 (1950), 161–166. 
DOI 10.2307/1969503[4] Hajnal A.: 
The chromatic number of the product of two $\aleph_{1}$-chromatic graphs can be countable. Combinatorica 5 (1985), no. 2, 137–139. 
DOI 10.1007/BF02579376[5] Halbeisen L., Tachtsis E.: 
On Ramsey choice and partial choice for infinite families of $n$-element sets. Arch. Math. Logic 59 (2020), no. 5–6, 583–606. 
DOI 10.1007/s00153-019-00705-7[7] Howard P. E.: 
Binary consistent choice on pairs and a generalization of König's infinity lemma. Fund. Math. 121 (1984), no. 1, 17–23. 
DOI 10.4064/fm-121-1-17-23[8] Howard P., Rubin J. E.: 
Consequences of the Axiom of Choice. Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. 
DOI 10.1090/surv/059 | 
Zbl 0947.03001[9] Howard P., Saveliev D. I., Tachtsis E.: 
On the set-theoretic strength of the existence of disjoint cofinal sets in posets without maximal elements. MLQ Math. Log. Q. 62 (2016), no. 3, 155–176. 
DOI 10.1002/malq.201400089[11] Jech T. J.: 
The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973. 
Zbl 0259.02052[13] Komjáth P., Totik V.: Problems and Theorems in Classical Set Theory. Problem Books in Mathematics, Springer, New York, 2006.
[15] Łoś J., Ryll-Nardzewski C.: 
On the application of Tychonoff's theorem in mathematical proofs. Fund. Math. 38 (1951), no. 1, 233–237. 
DOI 10.4064/fm-38-1-233-237[17] Tachtsis E.: 
On Ramsey's theorem and the existence of infinite chains or infinite anti-chains in infinite posets. J. Symb. Log. 81 (2016), no. 1, 384–394. 
DOI 10.1017/jsl.2015.47[18] Tachtsis E.: 
On the minimal cover property and certain notions of finite. Arch. Math. Logic. 57 (2018), no. 5–6, 665–686. 
DOI 10.1007/s00153-017-0595-y