[1] Albiac F., Kalton N. J.: 
Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, 2006. 
MR 2192298 | 
Zbl 1094.46002 
[3] Castillo J. M. F., Sanchez F.: 
Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. 
MR 1245024 
[4] Castillo J. M. F., Sánchez F.: 
Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces. J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. 
DOI 10.1006/jmaa.1994.1246 | 
MR 1283055 
[5] Defant A., Floret K.: 
Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993. 
MR 1209438 
[7] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: 
On the limited $p$-Schur property of some operator spaces. Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. 
MR 3758748 
[8] Dehghani M., Dehghani M. B., Moshtaghioun M. S.: 
Sequentially right Banach spaces of order $p$. Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. 
MR 4093429 
[10] Diestel J., Jarchow H., Tonge A.: 
Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. 
MR 1342297 
[12] Emmanuele G.: 
A dual characterization of Banach spaces not containing $\ell_1$. Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. 
MR 0861172 
[15] Ghenciu I., Lewis P.: 
The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324. 
DOI 10.4064/cm106-2-11 | 
MR 2283818 
[18] Li L., Chen D., Chávez-Domínguez J. A.: 
Pelczyński's property ($V^*$) of order $p$ and its quantification. Math. Nachr. 291 (2018), no. 2–3, 420–442. 
DOI 10.1002/mana.201600335 | 
MR 3767145 
[20] Pelczyński A.: 
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. 
MR 0149295 
[21] Ruess W.: 
Duality and geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78. 
DOI 10.1016/S0304-0208(08)71467-1 | 
MR 0761373 | 
Zbl 0573.46007 
[22] Ryan R. A.: 
Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002. 
MR 1888309 | 
Zbl 1090.46001 
[23] Salimi M., Moshtaghioun S. M.: 
The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92. 
DOI 10.15352/bjma/1313363004 | 
MR 2792501 
[24] Schlumprecht T.: 
Limited sets in injective tensor products. Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158. 
MR 1126743