| Title:
             | 
Limited $p$-converging operators and relation with some geometric properties of Banach spaces (English) | 
| Author:
             | 
Dehghani, Mohammad B. | 
| Author:
             | 
Moshtaghioun, Seyed M. | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
62 | 
| Issue:
             | 
4 | 
| Year:
             | 
2021 | 
| Pages:
             | 
417-430 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
By using the concepts of limited $p$-converging operators between two Banach spaces $X$ and $Y$, $L_p$-sets and $L_p$-limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as $*$-Dunford--Pettis property of order $p$ and Pelczyński's property of order $p$, $1\leq p<\infty$. (English) | 
| Keyword:
             | 
Gelfand--Phillips property | 
| Keyword:
             | 
Schur property | 
| Keyword:
             | 
$p$-Schur property | 
| Keyword:
             | 
weakly $p$-compact set | 
| Keyword:
             | 
reciprocal Dunford--Pettis property of order $p$ | 
| MSC:
             | 
46B25 | 
| MSC:
             | 
47L05 | 
| idZBL:
             | 
Zbl 07511570 | 
| idMR:
             | 
MR4405813 | 
| DOI:
             | 
10.14712/1213-7243.2021.030 | 
| . | 
| Date available:
             | 
2022-02-21T13:23:03Z | 
| Last updated:
             | 
2024-01-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149366 | 
| . | 
| Reference:
             | 
[1] Albiac F., Kalton N. J.: Topics in Banach Space Theory.Graduate Texts in Mathematics, 233, Springer, New York, 2006. Zbl 1094.46002, MR 2192298 | 
| Reference:
             | 
[2] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105 | 
| Reference:
             | 
[3] Castillo J. M. F., Sanchez F.: Dunford–Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024 | 
| Reference:
             | 
[4] Castillo J. M. F., Sánchez F.: Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces.J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR 1283055, 10.1006/jmaa.1994.1246 | 
| Reference:
             | 
[5] Defant A., Floret K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993. MR 1209438 | 
| Reference:
             | 
[6] Dehghani M. B., Moshtaghioun S. M.: On the $p$-Schur property of Banach spaces.Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR 3758748, 10.1215/20088752-2017-0033 | 
| Reference:
             | 
[7] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: On the limited $p$-Schur property of some operator spaces.Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR 3758748 | 
| Reference:
             | 
[8] Dehghani M., Dehghani M. B., Moshtaghioun M. S.: Sequentially right Banach spaces of order $p$.Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR 4093429 | 
| Reference:
             | 
[9] Delgado J. M., Piñeiro C.: A note on $p$-limited sets.J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR 3111861, 10.1016/j.jmaa.2013.08.045 | 
| Reference:
             | 
[10] Diestel J., Jarchow H., Tonge A.: Absolutely summing operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. MR 1342297 | 
| Reference:
             | 
[11] Drewnowski L.: On Banach spaces with the Gelfand–Phillips property.Math. Z. 193 (1986), no. 3, 405–411. MR 0862887, 10.1007/BF01229808 | 
| Reference:
             | 
[12] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell_1$.Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172 | 
| Reference:
             | 
[13] Fourie J. H., Zeekoei E. D.: $ DP^*$ properties of order $p$ on Banach spaces.Quaest. Math. 37 (2014), no. 3, 349–358. MR 3285289, 10.2989/16073606.2013.779611 | 
| Reference:
             | 
[14] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591 | 
| Reference:
             | 
[15] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11 | 
| Reference:
             | 
[16] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173 (French). Zbl 0050.10902, MR 0058866, 10.4153/CJM-1953-017-4 | 
| Reference:
             | 
[17] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360 | 
| Reference:
             | 
[18] Li L., Chen D., Chávez-Domínguez J. A.: Pelczyński's property ($V^*$) of order $p$ and its quantification.Math. Nachr. 291 (2018), no. 2–3, 420–442. MR 3767145, 10.1002/mana.201600335 | 
| Reference:
             | 
[19] Moshtaghioun S. M., Zafarani J.: Completely continuous subspaces of operator ideals.Taiwanese J. Math. 10 (2006), no. 3, 691–698. MR 2206322, 10.11650/twjm/1500403855 | 
| Reference:
             | 
[20] Pelczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295 | 
| Reference:
             | 
[21] Ruess W.: Duality and geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78. Zbl 0573.46007, MR 0761373, 10.1016/S0304-0208(08)71467-1 | 
| Reference:
             | 
[22] Ryan R. A.: Introduction to Tensor Products of Banach Spaces.Springer Monographs in Mathematics, Springer, London, 2002. Zbl 1090.46001, MR 1888309 | 
| Reference:
             | 
[23] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspaces of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004 | 
| Reference:
             | 
[24] Schlumprecht T.: Limited sets in injective tensor products.Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158. MR 1126743 | 
| . |