[2] Babalola, K. O.: On $H_{3,1}$ Hankel determinants for some classes of univalent functions. Inequality Theory & Applications 6 Nova Science Publishers, New York (2010), 1-7.
[4] Cudna, K., Kwon, O. S., Lecko, A., Sim, Y. J., Śmiarowska, B.: 
The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$. Bol. Soc. Mat. Mex., III. Ser. 26 (2020), 361-375. 
DOI 10.1007/s40590-019-00271-1 | 
MR 4110457 | 
Zbl 1435.30044 
[5] Duren, P. L.: 
Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). 
MR 0708494 | 
Zbl 0514.30001 
[7] Janteng, A., Halim, S. A., Darus, M.: 
Hankel determinant for starlike and convex functions. Int. J. Math. Anal., Ruse 1 (2007), 619-625. 
MR 2370200 | 
Zbl 1137.30308 
[8] Jastrzębski, P., Kowalczyk, B., Kwon, O. S., Sim, Y. J.: 
Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 166, 14 pages. 
DOI 10.1007/s13398-020-00895-3 | 
MR 4123919 | 
Zbl 1446.30027 
[22] Löwner, K.: 
Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89 (1923), 103-121 German \99999JFM99999 49.0714.01. 
DOI 10.1007/BF01448091 | 
MR 1512136 
[23] Sim, Y. J., Thomas, D. K.: 
On the difference of inverse coefficients of univalent functions. Symmetry 12 (2020), Article ID 2040, 14 pages. 
DOI 10.3390/sym12122040 
[24] Thomas, D. K.: 
On the coefficients of strongly starlike functions. Indian J. Math. 58 (2016), 135-146. 
MR 3559483 | 
Zbl 1360.30015