Previous |  Up |  Next

Article

Title: Sufficient conditions to determine the linear dependency of two meromorphic functions (English)
Author: Kundu, Arpita
Author: Banerjee, Abhijit
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 2
Year: 2025
Pages: 207-232
Summary lang: English
.
Category: math
.
Summary: We comprehensively explore the generalized concept of sharing sets to establish conditions for the linear dependency of two meromorphic functions. By applying this approach, we significantly extend and enhance the existing results related to URSM (unique range set of meromorphic functions). It is well known that URSMs can be represented as zeros of specific polynomials. However, our findings demonstrate that the concept of URSM can be understood from a broader perspective, where it can be characterized as a special case of the zero sets of two interconnected polynomials. Such investigations have not been conducted before, thus the text breaks the barriers of the traditional definition of URSM. (English)
Keyword: meromorphic function
Keyword: unique range set
Keyword: weighted shared sets wider sense
Keyword: linear dependency
MSC: 30D35
DOI: 10.21136/MB.2024.0140-23
.
Date available: 2025-05-20T11:55:27Z
Last updated: 2025-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152972
.
Reference: [1] Banerjee, A.: Uniqueness of meromorphic functions sharing two sets with finite weight. II.Tamkang. J. Math. 41 (2010), 379-392. Zbl 1213.30052, MR 2789974, 10.5556/j.tkjm.41.2010.787
Reference: [2] Banerjee, A.: A new class of strong uniqueness polynomials satisfying Fujimoto's condition.Ann. Acad. Sci. Fenn., Math. 40 (2015), 465-474. Zbl 1331.30019, MR 3329155, 10.5186/aasfm.2015.4025
Reference: [3] Banerjee, A.: Fujimoto's theorem - a further study.J. Contemp. Math. Anal., Armen. Acad. Sci. 51 (2016), 199-207. Zbl 1362.30040, MR 3586636, 10.3103/S1068362316040051
Reference: [4] Banerjee, A., Bhattacharjee, P.: Uniqueness of derivatives of meromorphic functions sharing two or three sets.Turk. J. Math. 34 (2010), 21-34. Zbl 1189.30064, MR 2654413, 10.3906/mat-0806-7
Reference: [5] Banerjee, A., Bhattacharjee, P.: Uniqueness and set sharing of derivatives of meromorphic functions.Math. Slovaca 61 (2011), 197-214. Zbl 1265.30141, MR 2786694, 10.2478/s12175-011-0005-6
Reference: [6] Banerjee, A., Chakraborty, B.: Further results on the uniqueness of meromorphic functions and their derivative counterpart sharing one or two sets.Jordan J. Math. Stat. 9 (2016), 117-139. Zbl 1362.30041, MR 3511542
Reference: [7] Banerjee, A., Lahiri, I.: A uniqueness polynomial generating a unique range set and vice versa.Comput. Methods Funct. Theory 12 (2012), 527-539. Zbl 1283.30064, MR 3058521, 10.1007/BF03321842
Reference: [8] Banerjee, A., Mallick, S.: On the characterisations of a new class of strong uniqueness polynomials generating unique range sets.Comput. Methods Funct. Theory 17 (2017), 19-45. Zbl 1364.30035, MR 3620877, 10.1007/s40315-016-0174-y
Reference: [9] Bartels, S.: Meromorphic functions sharing a set with 17 elements ignoring multiplicities.Complex Variables, Theory Appl. 39 (1999), 85-92. Zbl 1019.30030, MR 1697581, 10.1080/17476939908815183
Reference: [10] Chen, B., Li, Z., Li, S.: Uniqueness of the meromorphic function sharing two values with its derivatives.Pure Math. 8 (2018), 378-382 Chinese. 10.12677/PM.2018.84051
Reference: [11] Fang, M.-L., Lahiri, I.: Unique range set for certain meromorphic functions.Indian J. Math. 45 (2003), 141-150. Zbl 1048.30014, MR 2035902
Reference: [12] Frank, G., Reinders, M.: A unique range set for meromorphic functions with 11 elements.Complex Variables, Theory Appl. 37 (1998), 185-193. Zbl 1054.30519, MR 1687880, 10.1080/17476939808815132
Reference: [13] Fujimoto, H.: On uniqueness polynomials for meromorphic functions.Nagoya Math. J. 170 (2003), 33-46. Zbl 1046.30011, MR 1994886, 10.1017/S0027763000008527
Reference: [14] Gross, F.: Factorization of meromorphic functions and some open problems.Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 51-69. Zbl 0347.00005, MR 0444914, 10.1007/BFb0096825
Reference: [15] Gross, F., Yang, C. C.: On preimage and range sets of meromorphic functions.Proc. Japan Acad., Ser. A 58 (1982), 17-20 \99999DOI99999 10.3792/pjaa.58.17 . Zbl 0501.30026, MR 0649056, 10.3792/pjaa.58.17
Reference: [16] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [17] Lahiri, I.: Weighted sharing and uniqueness of meromorphic functions.Nagoya Math. J. 161 (2001), 193-206. Zbl 0981.30023, MR 1820218, 10.1017/S0027763000027215
Reference: [18] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions.Complex Variables, Theory Appl. 46 (2001), 241-253. Zbl 1025.30027, MR 1869738, 10.1080/17476930108815411
Reference: [19] Li, Y., Lin, W.: Set sharing results for derivatives of meromorphic functions.J. Math. Res. Appl. 42 (2022), 587-598. Zbl 1513.30152, MR 4503963, 10.3770/j.issn:2095-2651.2022.06.004
Reference: [20] Li, P., Yang, C.-C.: Some further results on the unique range sets of meromorphic functions.Kodai Math. J. 18 (1995), 437-450. Zbl 0849.30025, MR 1362919, 10.2996/kmj/1138043482
Reference: [21] Mokhon'ko, A. Z.: The Nevanlinna characteristics of certain meromorphic functions.Teor. Funkts., Funkts. Anal. Prilozh. 14 (1971), 83-87 Russian. Zbl 0237.30030, MR 0298006
Reference: [22] Pakovitch, F.: Sur un problème d'unicité pour les fonctions méromorphes.C. R. Acad. Sci., Paris, Sér. I 323 (1996), 745-748 French. Zbl 0891.30017, MR 1416169
Reference: [23] Qiu, G.: Uniqueness of entire functions that share some small functions.Kodai Math. J. 23 (2000), 1-11 \99999DOI99999 10.2996/kmj/1138044152 . Zbl 1121.30307, MR 1749381
Reference: [24] Yang, C. C.: Open problems.Complex Analysis Lecture Notes in Pure Applied Mathematics 36. Marcel Dekker, New York (1978), 169-170. Zbl 0381.30003, MR 0492217
Reference: [25] Yi, H.-X.: Uniqueness of meromorphic functions and question of Gross.Sci. China, Ser. A 37 (1994), 802-813. Zbl 0821.30024, MR 1324763
Reference: [26] Yi, H.-X.: Unicity theorems for meromorphic or entire functions. III.Bull. Aust. Math. Soc. 53 (1996), 71-82. Zbl 0855.30025, MR 1371914, 10.1017/S0004972700016737
Reference: [27] Yi, H.: The reduced unique range sets for entire or meromorphic functions.Complex Variables, Theory Appl. 32 (1997), 191-198. Zbl 0881.30026, MR 1457685, 10.1080/17476939708814990
Reference: [28] Yi, H., Lü, W.: Meromorphic functions that share two sets. II.Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 83-90. Zbl 1140.30315, MR 2036066, 10.1016/S0252-9602(17)30363-6
.

Files

Files Size Format View
MathBohem_150-2025-2_3.pdf 322.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo