Title:
|
The narrow recurrence of random dynamical systems (English) |
Author:
|
Zaou, Ahmed |
Author:
|
Amouch, Mohamed |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
150 |
Issue:
|
2 |
Year:
|
2025 |
Pages:
|
233-244 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(\Omega ,\mathcal {F},\mathbb {P})$ be a probability space, where $\mathcal {F}$ is countably generated, and $X$ be a Polish space. Let $\varphi $ be a random dynamical system with time $\mathbb {T}$ on $X$. The skew product flow $ \{\Theta _{t} , \ t\in \mathbb {T} \} $ induced by $\varphi $ is a family of continuous operators acting on $\Pr _{\Omega }(X)$, the set of all probability measures on $X\times \Omega $ with marginal $\mathbb {P}$, which is a Polish space equipped with the narrow topology. In this work, we introduce and study the notion of narrow recurrence of the flow $\{\Theta _{t},\ t\in \mathbb {T} \} $ on ${\rm Pr}_{\Omega }(X)$ and we give some results, which can be considered as an initiation of applications of properties of topological dynamics on stochastic process theory and random dynamical systems. (English) |
Keyword:
|
hypercyclicity |
Keyword:
|
transitivity |
Keyword:
|
recurrence |
Keyword:
|
the narrow topology |
Keyword:
|
random dynamical system |
MSC:
|
37B20 |
MSC:
|
46E50 |
MSC:
|
46T25 |
MSC:
|
47A16 |
DOI:
|
10.21136/MB.2024.0139-23 |
. |
Date available:
|
2025-05-20T11:56:00Z |
Last updated:
|
2025-05-20 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152973 |
. |
Reference:
|
[1] Amouch, M., Bachir, A., Benchiheb, O., Mecheri, S.: Weakly recurrent operators.Mediterr. J. Math. 20 (2023), Article ID 169, 16 pages. Zbl 1525.47017, MR 4565105, 10.1007/s00009-023-02374-6 |
Reference:
|
[2] Arnold, L.: Random Dynamical Systems.Springer Monographs in Mathematics. Springer, Berlin (1998). Zbl 0906.34001, MR 1723992, 10.1007/978-3-662-12878-7 |
Reference:
|
[3] Bès, J., Chan, K. C., Sanders, R.: Every weakly sequentially hypercyclic shift is norm hypercyclic.Math. Proc. R. Ir. Acad. 105A (2005), 79-85. Zbl 1113.47005, MR 2182152, 10.1353/mpr.2005.0000 |
Reference:
|
[4] Bès, J., Chan, K. C., Sanders, R.: Weak$^*$ hypercyclicity and supercyclicity of shifts on $\ell^\infty$.Integral Equations Oper. Theory 55 (2006), 363-376. Zbl 1109.47009, MR 2244194, 10.1007/s00020-005-1394-0 |
Reference:
|
[5] Chan, K. C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic.J. Oper. Theory 52 (2004), 39-59. Zbl 1114.47006, MR 2091459 |
Reference:
|
[6] Costakis, G., Manoussos, A., Parissis, I.: Recurrent linear operators.Complex Anal. Oper. Theory 8 (2014), 1601-1643. Zbl 1325.47019, MR 3275437, 10.1007/s11785-013-0348-9 |
Reference:
|
[7] Costakis, G., Parissis, I.: Szemerédi's theorem, frequent hypercyclicity and multiple recurrence.Math. Scand. 110 (2012), 251-272. Zbl 1246.47003, MR 2943720, 10.7146/math.scand.a-15207 |
Reference:
|
[8] Crauel, H.: Random Probability Measures on Polish Spaces.Stochastics Monographs 11. CRC Press, New York (2002). Zbl 1031.60041, MR 1993844, 10.4324/9780203219119 |
Reference:
|
[9] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.Princeton University Press, Princeton (1981). Zbl 0459.28023, MR 0603625, 10.1515/9781400855162 |
Reference:
|
[10] Gottschalk, W. H., Hedlund, G. A.: Topological Dynamics.American Mathematical Society Colloquium Publications 36. AMS, Providence (1955). Zbl 0067.15204, MR 0074810, 10.1090/coll/036 |
Reference:
|
[11] Karim, N., Benchiheb, O., Amouch, M.: Recurrence of multiples of composition operators on weighted Dirichlet spaces.Adv. Oper. Theory 7 (2022), Article ID 23, 15 pages. Zbl 495.47023, MR 4409863, 10.1007/s43036-022-00186-1 |
Reference:
|
[12] Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique.Acta Math. 13 (1890), 3-270 French \99999JFM99999 22.0907.01. |
Reference:
|
[13] Sanders, R.: Weakly supercyclic operators.J. Math. Anal. Appl. 292 (2004), 148-159. Zbl 1073.47013, MR 2050222, 10.1016/j.jmaa.2003.11.049 |
Reference:
|
[14] Neerven, J. van: The Asymptotic Behaviour of Semigroups of Linear Operators.Operator Theory: Advances and Applications 88. Birkhäuser, Basel (1996). Zbl 0905.47001, MR 1409370, 10.1007/978-3-0348-9206-3 |
Reference:
|
[15] Zaou, A., Amouch, M.: The narrow recurrence of continuous-time Markov chains.Funct. Anal. Approx. Comput. 16 (2024), 29-35. MR 4761148 |
Reference:
|
[16] Zaou, A., Amouch, M.: The narrow recurrence of Markov chains.Rend. Circ. Mat. Palermo (2) 73 (2024), 613-620 \99999DOI99999 10.1007/s12215-023-00937-w . Zbl 7812637, MR 4709081, 10.1007/s12215-023-00937-w |
. |