Previous |  Up |  Next

Article

Title: A stochastic version of Vidyasagar theorem on the stabilization of interconnected systems (English)
Author: Florchinger, Patrick
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 6
Year: 2025
Pages: 752-761
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to provide sufficient conditions for the feedback asymptotic stabilization in probability for a class of affine in the control nonlinear stochastic differential systems. In fact, under the assumptions stated in this paper we prove the existence of a control Lyapunov function that according to the stochastic version of Artstein's theorem guarantees the asymptotic stability in probability by means of a state feedback law that is smooth except eventually at the equilibrium. This result generalizes the well-known theorem of Vidyasagar concerning the feedback stabilization problem for interconnected control systems. (English)
Keyword: asymptotic stability in probability
Keyword: control Lyapunov function
Keyword: smooth state feedback law
MSC: 60H10
MSC: 93C10
MSC: 93D05
MSC: 93D15
MSC: 93E15
DOI: 10.14736/kyb-2025-6-0752
.
Date available: 2026-01-07T11:16:08Z
Last updated: 2026-01-07
Stable URL: http://hdl.handle.net/10338.dmlcz/153263
.
Reference: [1] Abedi, F., Leong, W. J.: Stabilization of some composite stochastic control systems with nontrivial solutions..Europ- J. Control 38 (2017), 16-21.
Reference: [2] Abedi, F., Leong, W. J., Chaharborj, S. S.: A notion of stability in probability of stochastic nonlinear systems..Adv. Differ. Equations 2013 (2013), 363.
Reference: [3] Artstein, Z.: Stabilization with relaxed controls..Nonlinear Analysis Theory Methods Appl. 7 (1983), 1163-1173. Zbl 0525.93053,
Reference: [4] C.Boulanger: Stabilization of nonlinear stochastic systems using control Lyapunov function..In: Proc. 36th IEEE CDC, San Diego 1997.
Reference: [5] Daumail, L., Florchinger, P.: A constructive extension of Artstein's theorem to the stochastic context..Stochast. Dynamics 2 (2002), 2, 251-263.
Reference: [6] Deng, H., Krstić, M., Williams, R.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance..IEEE Trans. Automat. Control 46 (2001), 8, 1237-1253.
Reference: [7] Florchinger, P.: A universal formula for the stabilization of control stochastic differential equations..Stochastic Analysis Appl. 11 (1993), 2, 155-162.
Reference: [8] Florchinger, P.: Lyapunov-like techniques for stochastic stability..SIAM J. Control Optim. 33 (1995), 4, 1151-1169. Zbl 0845.93085, MR 1339059,
Reference: [9] Florchinger, P.: Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method..SIAM J. Control Optim. 35 (1997), 2, 500-511.
Reference: [10] Florchinger, P.: New results on universal formulas for the stabilization of stochastic differential systems..Stochast. Anal. Appl. 16 (1998), 2, 233-240.
Reference: [11] Florchinger, P.: A stochastic Jurdjevic-Quinn theorem..SIAM J. Control Optim. 41 (2002), 1, 83-88. Zbl 1014.60062,
Reference: [12] Florchinger, P.: Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers..Kybernetika 58 (2022), 4, 626-636.
Reference: [13] Gao, Z. Y., Ahmed, N. U.: Feedback stabilizability of nonlinear stochastic systems with state-dependent noise..Int.J. Control 45(1987), 2, 729-737.
Reference: [14] Himmi, H., Oumoun, M.: Design stabilizers for multi-input affine control stochastic systems via stochastic control Lyapunov functions..Int.J. Control 98 (2024), 2, 393-401.
Reference: [15] Khasminskii, R. Z.: Stochastic Stability of Differential Equations..Sijthoff Noordhoff, Alphen aan den Rijn 1980. Zbl 1241.60002
Reference: [16] Kushner, H. J.: Converse theorems for stochastic Liapunov functions..J. Control Optim. 5 (1967), 2, 228-233.
Reference: [17] M.Oumoun: Continuous stabilization of composite stochastic systems..IFAC-PapersOnLine 55 12 (2022) 713-716.
Reference: [18] Silva, G. F., McFadyen, A., Ford, J.: Scalable input-to-state stability of nonlinear interconnected systems..EEE Trans. Automat. Control 70 (2025), 3, 1824-1834.
Reference: [19] Sontag, E. D.: A universal construction of Artstein's theorem on nonlinear stabilization..Systems Control Lett. 13 (1989), 117-123.
Reference: [20] Tsinias, J.: Asymptotic feedback stabilization: A sufficient condition for the existence of control Lyapunov functions..Systems Control Lett. 15 (1990), 441-448.
Reference: [21] Tsinias, J.: Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems..SIAM J. Control Optim. 29 (1991), 2, 457-473.
Reference: [22] Tsinias, J.: On the existence of control Lyapunov functions: Generalizations of Vidyasagar's theorem on nonlinear stabilization..SIAM J. Control Optim. 30 (1992), 4, 879-893.
Reference: [23] Tsinias, J., Kalouptsidis, N.: Output feedback stabilization..IEEE Trans. Automat. Control 35 (1990), 951-954.
Reference: [24] Vidyasagar, M.: Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability..IEEE Trans. Automat. Control 25 (1980), 773-779.
.

Files

Files Size Format View
Kybernetika_61-2025-6_2.pdf 378.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo