[1] Abedi, F., Leong, W. J.:
Stabilization of some composite stochastic control systems with nontrivial solutions. Europ- J. Control 38 (2017), 16-21.
DOI
[2] Abedi, F., Leong, W. J., Chaharborj, S. S.:
A notion of stability in probability of stochastic nonlinear systems. Adv. Differ. Equations 2013 (2013), 363.
DOI
[3] Artstein, Z.:
Stabilization with relaxed controls. Nonlinear Analysis Theory Methods Appl. 7 (1983), 1163-1173.
DOI |
Zbl 0525.93053
[4] C.Boulanger: Stabilization of nonlinear stochastic systems using control Lyapunov function. In: Proc. 36th IEEE CDC, San Diego 1997.
[5] Daumail, L., Florchinger, P.:
A constructive extension of Artstein's theorem to the stochastic context. Stochast. Dynamics 2 (2002), 2, 251-263.
DOI
[6] Deng, H., Krstić, M., Williams, R.:
Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Automat. Control 46 (2001), 8, 1237-1253.
DOI
[7] Florchinger, P.:
A universal formula for the stabilization of control stochastic differential equations. Stochastic Analysis Appl. 11 (1993), 2, 155-162.
DOI
[8] Florchinger, P.:
Lyapunov-like techniques for stochastic stability. SIAM J. Control Optim. 33 (1995), 4, 1151-1169.
DOI |
MR 1339059 |
Zbl 0845.93085
[9] Florchinger, P.:
Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method. SIAM J. Control Optim. 35 (1997), 2, 500-511.
DOI
[10] Florchinger, P.:
New results on universal formulas for the stabilization of stochastic differential systems. Stochast. Anal. Appl. 16 (1998), 2, 233-240.
DOI
[11] Florchinger, P.:
A stochastic Jurdjevic-Quinn theorem. SIAM J. Control Optim. 41 (2002), 1, 83-88.
DOI |
Zbl 1014.60062
[12] Florchinger, P.:
Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers. Kybernetika 58 (2022), 4, 626-636.
DOI
[13] Gao, Z. Y., Ahmed, N. U.:
Feedback stabilizability of nonlinear stochastic systems with state-dependent noise. Int.J. Control 45(1987), 2, 729-737.
DOI
[14] Himmi, H., Oumoun, M.:
Design stabilizers for multi-input affine control stochastic systems via stochastic control Lyapunov functions. Int.J. Control 98 (2024), 2, 393-401.
DOI
[15] Khasminskii, R. Z.:
Stochastic Stability of Differential Equations. Sijthoff Noordhoff, Alphen aan den Rijn 1980.
Zbl 1241.60002
[16] Kushner, H. J.:
Converse theorems for stochastic Liapunov functions. J. Control Optim. 5 (1967), 2, 228-233.
DOI
[17] M.Oumoun:
Continuous stabilization of composite stochastic systems. IFAC-PapersOnLine 55 12 (2022) 713-716.
DOI
[18] Silva, G. F., McFadyen, A., Ford, J.:
Scalable input-to-state stability of nonlinear interconnected systems. EEE Trans. Automat. Control 70 (2025), 3, 1824-1834.
DOI
[19] Sontag, E. D.:
A universal construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123.
DOI
[20] Tsinias, J.:
Asymptotic feedback stabilization: A sufficient condition for the existence of control Lyapunov functions. Systems Control Lett. 15 (1990), 441-448.
DOI
[21] Tsinias, J.:
Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems. SIAM J. Control Optim. 29 (1991), 2, 457-473.
DOI
[22] Tsinias, J.:
On the existence of control Lyapunov functions: Generalizations of Vidyasagar's theorem on nonlinear stabilization. SIAM J. Control Optim. 30 (1992), 4, 879-893.
DOI
[23] Tsinias, J., Kalouptsidis, N.:
Output feedback stabilization. IEEE Trans. Automat. Control 35 (1990), 951-954.
DOI
[24] Vidyasagar, M.:
Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability. IEEE Trans. Automat. Control 25 (1980), 773-779.
DOI