[1] Carnevale, G., Farina, F., Notarnicolam, I., Notarstefano, G.:
GTAdam: Gradient tracking with adaptive momentum for distributed online optimization. IEEE Trans. Control Network Systems 10 (2022), 3, 1436-1448.
DOI
[2] Chen, W., Ren, W.:
Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica 65 (2016), 90-97.
DOI |
MR 3447697 |
Zbl 1328.93167
[3] Chen, C., Shen, L., Liu, W., Luo, Z.-Q.:
Efficient-Adam: Communication-Efficient Distributed Adam. IEEE Trans. Signal Process. (2023).
DOI
[4] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Adv. Neural Inform. Process. Systems 27 (2014).
[5] Gao, L., Deng, S., Li, H., Li, Ch.:
An event-triggered approach for gradient tracking in consensus-based distributed optimization. IEEE Trans. Network Sci. Engrg. 9 (2021), 2, 510-523.
DOI
[6] Huang, H.-Ch., Lee, J.:
A new variable step-size NLMS algorithm and its performance analysis. IEEE Trans. Signal Process. 60 (2011), 4, 2055-2060.
DOI
[7] Huang, K., Pu, S., Nedić, A.: An accelerated distributed stochastic gradient method with momentum. arXiv preprint arXiv:2402.09714 (2024).
[8] Jiang, X., Zeng, X., Sun, J., Chen, Jie:
Distributed stochastic gradient tracking algorithm with variance reduction for non-convex optimization. IEEE Trans. Neural Networks Learning Systems 34 (2022), 9, 5310-5321.
DOI
[9] Lee, H., Lee, S. H., Quek, T. Q. S.:
Deep learning for distributed optimization: Applications to wireless resource management. IEEE J. Select. Areas Commun. 37 (2019), 10, 2251-2266.
DOI
[10] Lee, H.-S., Kim, S.-E., Lee, J.-W., Song, W.-J.:
A variable step-size diffusion LMS algorithm for distributed estimation. IEEE Trans. Signal Process. 63 (2015), 7, 1808-1820.
DOI
[11] Lederer, A., Yang, Z., Jiao, J., Hirche, S.:
Cooperative control of uncertain multiagent systems via distributed Gaussian processes. IEEE Trans. Automat. Control 68 (2022), 5, 3091-3098.
DOI
[12] Li, Q., Liao, Y., Wu, K., Zhang, L., Lin, J., Chen, M., Guerrero, J. M., Abbott, D.:
Parallel and distributed optimization method with constraint decomposition for energy management of microgrids. IEEE Trans. Smart Grid 12 (2021), 6, 4627-4640.
DOI
[13] Li, H., Liao, X., Chen, G., Hill, D. J., Dong, Z., Huang, T.:
Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Networks 66 (2015), 1-10.
DOI
[14] Li, H., Liu, S., Soh, Y. Ch., Xie, L., Xia, D.: Achieving linear convergence for distributed optimization with zeno-like-free event-triggered communication scheme. In: Proc. 29th Chinese Control And Decision Conference 2017, pp. 6224-6229.
[15] Li, H., Zheng, L., Wang, Z., Yan, Y., Feng, L., Guo, J.:
S-DIGing: A stochastic gradient tracking algorithm for distributed optimization. IEEE Trans. Emerging Topics Comput. Intell. 6 (2020), no. 1, 53-65.
DOI
[16] Li, J., Su, H.: Gradient tracking: A unified approach to smooth distributed optimization. arXiv preprint arXiv:2202.09804 (2022).
[17] Liu, X., Miao, Ch., Fiumara, G., Meo, P. De:
Information propagation prediction based on spatial-temporal attention and heterogeneous graph convolutional networks. IEEE Trans. Comput. Social Systems 11 (2024), 1, 945-958.
DOI
[18] Liu, Ch., Dou, X., Fan, Y., Cheng, S.:
A penalty ADMM with quantized communication for distributed optimization over multi-agent systems. Kybernetika 59 (2023), 3, 392-417.
DOI
[19] Liu, S., Xie, L., Quevedo, D. E.:
Event-triggered quantized communication-based distributed convex optimization. IEEE Trans. Control Network Systems 5 (2016), 1, 167-178.
DOI
[20] Lu, K., Zhu, Q.:
Distributed algorithms involving fixed step size for mixed equilibrium problems with multiple set constraints. IEEE Trans. Neural Networks Learn. Systems 32 (2020), 11, 5254-5260.
DOI
[21] Morral, G., Bianchi, P., Fort, G.:
Success and failure of adaptation-diffusion algorithms with decaying step size in multiagent networks. IEEE Trans. Signal Process. 65 (2017), 11, 2798-2813.
DOI
[22] Nedic, A., Olshevsky, A., Shi, W.:
Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J. Optim. 27 (2017), 4, 2597-2633.
DOI
[23] Qian, N.:
On the momentum term in gradient descent learning algorithms. Neural Networks 12 (1999), 1, 145-151.
DOI
[24] Qu, G., Li, N.:
Harnessing smoothness to accelerate distributed optimization. IEEE Trans. Control Network Systems 5 (2017), 3, 1245-1260.
DOI
[25] Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Proc. 3rd International Symposium on Information Processing in Sensor Networks 2004, pp. 20-27.
[26] Shen, Z., Yin, H.:
A distributed routing-aware deployment algorithm for underwater sensor networks. IEEE Sensors J. (2024).
DOI
[27] Shi, W., Ling, Q., Wu, G., Yin, W.:
Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25 (2015), 2, 944-966.
DOI
[28] Tychogiorgos, G., Gkelias, A., Leung, K. K.:
A non-convex distributed optimization framework and its application to wireless ad-hoc networks. IEEE Trans. Wireless Commun. 12 (2013), 9, 4286-4296.
DOI
[29] Tron, R., Thomas, J., Loianno, G., Daniilidis, K., Kumar, V.:
A distributed optimization framework for localization and formation control: Applications to vision-based measurements. IEEE Control Systems Magazine 36 (2016), 4, 22-44.
DOI
[30] Tu, Z., Liang, S.:
Distributed dual averaging algorithm for multi-agent optimization with coupled constraints. Kybernetika 60 (2024), 4, 427-445.
DOI
[31] Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, Ho., Lin, Z., Johansson, K. H.:
A survey of distributed optimization. Ann. Rev. Control 47 (2019), 278-305.
DOI
[32] Yang, Q., Chen, W.-N., Gu, T., Zhang, H., Yuan, H., Kwong, S., Zhang, J.:
A distributed swarm optimizer with adaptive communication for large-scale optimization. IEEE Trans. Cybernetics 50 (2019), 7, 3393-3408.
DOI
[33] Yuan, Y., He, W., Du, W., Tian, Y.-Ch., Han, Q.-L., Qian, F.:
Distributed gradient tracking for differentially private multi-agent optimization with a dynamic event-triggered mechanism. IEEE Trans. Systems Man Cybernet.: Systems (2024).
DOI
[34] Wang, Y., Cheng, S.:
A stochastic mirror-descent algorithm for solving $AXB=C$ over a multi-agent system. Kybernetika 57 (2021), 2, 256-271.
DOI