Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
magnetohydrodynamic equation; two-grid method; penalty method; Arrow-Hurwicz method; stability; error estimation
Summary:
We propose and analyze three kinds of two-grid penalty Arrow-Hurwicz (A-H) iterative finite element methods for the stationary incompressible magnetohydrodynamic (MHD) equations, which adopt the existing A-H iterative method to obtain the coarse mesh solution, and then correct the solution by three different one-step schemes (Oseen type, Stokes type and Newton type) with the usual penalty method on the fine mesh. These methods combine the A-H iterative method, the penalty method and the two-grid strategy, maintaining the advantage of three methods and overcoming some of their limitations. Rigorous analysis of the optimal error estimate and stability for three methods are provided. Ample numerical experiments are reported to validate the theoretical results and the efficiency of the numerical schemes.
References:
[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. Pure and Applied Mathematics 140. Academic Press, New York (2003). MR 2424078 | Zbl 1098.46001
[2] An, R., Shi, F.: Two-level iteration penalty methods for the incompressible flows. Appl. Math. Modelling 39 (2015), 630-641. DOI 10.1016/j.apm.2014.06.014 | MR 3282600 | Zbl 1432.76151
[3] Arrow, K. J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Stanford Mathematical Studies in the Social Sciences 2. Standford University Press, Standford (1958). MR 108399 | Zbl 0091.16002
[4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer, New York (1994). DOI 10.1007/978-1-4757-4338-8 | MR 1278258 | Zbl 0804.65101
[5] Chen, P., Huang, J.: On the geometric convergence of the Arrow-Hurwicz algorithm for steady incompressible Navier-Stokes equations. J. Comput. Anal. Appl. 18 (2015), 628-635. MR 3308485 | Zbl 1333.35157
[6] Chen, P., Huang, J., Sheng, H.: Solving steady incompressible Navier-Stokes equations by the Arrow-Hurwicz method. J. Comput. Appl. Math. 311 (2017), 100-114. DOI 10.1016/j.cam.2016.07.010 | MR 3552689 | Zbl 1382.76161
[7] Cheng, X.-L., Shaikh, A. W.: Analysis of the iterative penalty method for the Stokes equations. Appl. Math. Lett. 19 (2006), 1024-1028. DOI 10.1016/j.aml.2005.10.021 | MR 2246170 | Zbl 1128.76032
[8] Codina, R.: An iterative penalty method for the finite element solution of the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 110 (1993), 237-262. DOI 10.1016/0045-7825(93)90163-R | MR 1256320 | Zbl 0844.76049
[9] Dai, X.: Finite element approximation of the pure Neumann problem using the iterative penalty method. Appl. Math. Comput. 186 (2007), 1367-1373. DOI 10.1016/j.amc.2006.07.148 | MR 2316756 | Zbl 1117.65153
[10] Degond, P., Ferreira, M. A., Motsch, S.: Damped Arrow-Hurwicz algorithm for sphere packing. J. Comput. Phys. 332 (2017), 47-65. DOI 10.1016/j.jcp.2016.11.047 | MR 3591170 | Zbl 1378.65121
[11] Deng, J., Tao, Z., Zhang, T.: Iterative penalty finite element methods for the steady incompressible magnetohydrodynamic problem. Comput. Appl. Math. 36 (2017), 1637-1657. DOI 10.1007/s40314-016-0323-y | MR 3714615 | Zbl 1381.76161
[12] Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sci. Comput. 63 (2015), 426-451. DOI 10.1007/s10915-014-9900-7 | MR 3328191 | Zbl 06456931
[13] Dong, X., He, Y.: Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics. Sci. China, Math. 59 (2016), 589-608. DOI 10.1007/s11425-015-5087-0 | MR 3457057 | Zbl 1338.35328
[14] Dong, X., He, Y.: The Oseen type finite element iterative method for the stationary incompressible magnetohydrodynamics. Adv. Appl. Math. Mech. 9 (2017), 775-794. DOI 10.4208/aamm.2015.m934 | MR 3609990 | Zbl 1488.35418
[15] Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276 (2014), 287-311. DOI 10.1016/j.cma.2014.03.022 | MR 3212336 | Zbl 1423.76226
[16] Du, B., Huang, J.: The generalized Arrow-Hurwicz method with applications to fluid computation. Commun. Comput. Phys. 25 (2019), 752-780. DOI 10.4208/cicp.OA-2017-0235 | MR 3878521 | Zbl 1473.76037
[17] Du, B., Huang, J., Mahbub, M. A. Al, Zheng, H.: Two-level methods based on the Arrow-Hurwicz iteration for the steady incompressible magnetohydrodynamic system. Numer. Methods Partial Differ. Equations 39 (2023), 3332-3355. DOI 10.1002/num.23010 | MR 4596563 | Zbl 1535.65277
[18] Du, B., Huang, J., Zheng, H.: Two-grid Arrow-Hurwicz methods for the steady incompressible Navier-Stokes equations. J. Sci. Comput. 89 (2021), Article ID 24, 24 pages. DOI 10.1007/s10915-021-01627-4 | MR 4309805 | Zbl 1493.65195
[19] Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000), 83-111. DOI 10.1007/s002110000193 | MR 1800155 | Zbl 0988.76050
[20] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). DOI 10.1093/acprof:oso/9780198566656.001.0001 | MR 2289481 | Zbl 1107.76001
[21] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics 5. Springer, Berlin (1986). DOI 10.1007/978-3-642-61623-5 | MR 851383 | Zbl 0585.65077
[22] Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. DOI 10.1016/j.cma.2010.05.007 | MR 2740762 | Zbl 1231.76146
[23] Gunzburger, M. D., Meir, A. J., Peterson, J. S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56 (1991), 523-563. DOI 10.1090/S0025-5718-1991-1066834-0 | MR 1066834 | Zbl 0731.76094
[24] Hasler, U., Schneebeli, A., Schötzau, D.: Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math. 51 (2004), 19-45. DOI 10.1016/j.apnum.2004.02.005 | MR 2083323 | Zbl 1126.76341
[25] He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74 (2005), 1201-1216. DOI 10.1090/S0025-5718-05-01751-5 | MR 2136999 | Zbl 1065.35025
[26] He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35 (2015), 767-801. DOI 10.1093/imanum/dru015 | MR 3335224 | Zbl 1312.76061
[27] He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier-Stoke equations. Int. J. Inf. Syst. Sci. 2 (2006), 131-143. MR 2220510 | Zbl 1099.65110
[28] Hecht, F.: New development in freefem++. J. Numer. Math. 20 (2012), 251-265. DOI 10.1515/jnum-2012-0013 | MR 3043640 | Zbl 1266.68090
[29] Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40 (2009), 281-314. DOI 10.1007/s10915-008-9265-x | MR 2511736 | Zbl 1203.76083
[30] Huang, P.: Iterative methods in penalty finite element discretizations for the steady Navier-Stokes equations. Numer. Methods Partial Differ. Equations 30 (2014), 74-94. DOI 10.1002/num.21795 | MR 3149401 | Zbl 1299.76042
[31] Huang, P., Feng, X., He, Y.: Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations. Appl. Math. Modelling 37 (2013), 728-741. DOI 10.1016/j.apm.2012.02.051 | MR 3002184 | Zbl 1351.76060
[32] Keram, A., Huang, P.: The Arrow-Hurwicz iterative finite element method for the stationary thermally coupled incompressible magnetohydrodynamics flow. J. Sci. Comput. 92 (2022), Article ID 11, 25 pages. DOI 10.1007/s10915-022-01867-y | MR 4434142 | Zbl 1492.65315
[33] Layton, W.: A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26 (1993), 33-38. DOI 10.1016/0898-1221(93)90318-P | MR 1220955 | Zbl 0773.76042
[34] Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35 (1998), 2035-2054. DOI 10.1137/S003614299630230X | MR 1639994 | Zbl 0913.76050
[35] Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995), 1170-1184. DOI 10.1137/0732054 | MR 1342288 | Zbl 0853.65092
[36] Moreau, R.: Magnetohydrodynamics. Fluid Mechanics and Its Applications 3. Kluwer Academic Publishers, Boston (1990). DOI 10.1007/978-94-015-7883-7 | MR 1144019 | Zbl 0714.76003
[37] Nesliturk, A. I., Aydın, S. H., Tezer-Sezgin, M.: Two-level finite element method with a stabilizing subgrid for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 58 (2008), 551-572. DOI 10.1002/fld.1753 | MR 2458542 | Zbl 1145.76032
[38] Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. DOI 10.1051/m2an:2008034 | MR 2473320 | Zbl 1149.76029
[39] Schmidt, P. G.: A Galerkin method for time-dependent MHD flow with nonideal boundaries. Commun. Appl. Anal. 3 (1999), 383-398. MR 1696344 | Zbl 0931.76099
[40] Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96 (2004), 771-800. DOI 10.1007/s00211-003-0487-4 | MR 2036365 | Zbl 1098.76043
[41] Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32 (1995), 386-403. DOI 10.1137/0732016 | MR 1324294 | Zbl 0822.35008
[42] Su, H., Mao, S., Feng, X.: Optimal error estimates of penalty based iterative methods for steady incompressible magnetohydrodynamics equations with different viscosities. J. Sci. Comput. 79 (2019), 1078-1110. DOI 10.1007/s10915-018-0883-7 | MR 3969002 | Zbl 1419.65123
[43] Tang, Q., Huang, Y.: Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70 (2017), 149-174. DOI 10.1007/s10915-016-0246-1 | MR 3592137 | Zbl 1434.76073
[44] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam (1984). MR 0769654 | Zbl 0568.35002
[45] Wang, L., Li, J., Huang, P.: An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method. Int. Commun. Heat Mass Transfer 98 (2018), 183-190. DOI 10.1016/j.icheatmasstransfer.2018.02.019
[46] Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994), 231-237. DOI 10.1137/0915016 | MR 1257166 | Zbl 0795.65077
[47] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996), 1759-1777. DOI 10.1137/S003614299223294 | MR 1411848 | Zbl 0860.65119
[48] Yang, Y.-B., Jiang, Y.-L.: Error correction iterative method for the stationary incompressible MHD flow. Math. Methods Appl. Sci. 43 (2020), 750-768. DOI 10.1002/mma.5958 | MR 4056462 | Zbl 1444.65068
[49] Yang, Y.-B., Jiang, Y.-L., Kong, Q.-X.: The Arrow-Hurwicz iterative finite element method for the stationary magnetohydrodynamics flow. Appl. Math. Comput. 356 (2019), 347-361. DOI 10.1016/j.amc.2018.10.050 | MR 3934539 | Zbl 1428.76108
[50] Yang, Y., Jiang, Y., Kong, Q.: Two-grid stabilized FEMs based on Newton type linearization for the steady-state natural convection problem. Adv. Appl. Math. Mech. 12 (2020), 407-435. DOI 10.4208/aamm.OA-2018-0156 | MR 4057193 | Zbl 1488.65666
Partner of
EuDML logo