[1] Adams, R. A., Fournier, J. J. F.:
Sobolev Spaces. Pure and Applied Mathematics 140. Academic Press, New York (2003).
MR 2424078 |
Zbl 1098.46001
[3] Arrow, K. J., Hurwicz, L., Uzawa, H.:
Studies in Linear and Non-Linear Programming. Stanford Mathematical Studies in the Social Sciences 2. Standford University Press, Standford (1958).
MR 108399 |
Zbl 0091.16002
[5] Chen, P., Huang, J.:
On the geometric convergence of the Arrow-Hurwicz algorithm for steady incompressible Navier-Stokes equations. J. Comput. Anal. Appl. 18 (2015), 628-635.
MR 3308485 |
Zbl 1333.35157
[13] Dong, X., He, Y.:
Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics. Sci. China, Math. 59 (2016), 589-608.
DOI 10.1007/s11425-015-5087-0 |
MR 3457057 |
Zbl 1338.35328
[15] Dong, X., He, Y., Zhang, Y.:
Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276 (2014), 287-311.
DOI 10.1016/j.cma.2014.03.022 |
MR 3212336 |
Zbl 1423.76226
[17] Du, B., Huang, J., Mahbub, M. A. Al, Zheng, H.:
Two-level methods based on the Arrow-Hurwicz iteration for the steady incompressible magnetohydrodynamic system. Numer. Methods Partial Differ. Equations 39 (2023), 3332-3355.
DOI 10.1002/num.23010 |
MR 4596563 |
Zbl 1535.65277
[22] Greif, C., Li, D., Schötzau, D., Wei, X.:
A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855.
DOI 10.1016/j.cma.2010.05.007 |
MR 2740762 |
Zbl 1231.76146
[27] He, Y., Li, J., Yang, X.:
Two-level penalized finite element methods for the stationary Navier-Stoke equations. Int. J. Inf. Syst. Sci. 2 (2006), 131-143.
MR 2220510 |
Zbl 1099.65110
[30] Huang, P.:
Iterative methods in penalty finite element discretizations for the steady Navier-Stokes equations. Numer. Methods Partial Differ. Equations 30 (2014), 74-94.
DOI 10.1002/num.21795 |
MR 3149401 |
Zbl 1299.76042
[37] Nesliturk, A. I., Aydın, S. H., Tezer-Sezgin, M.:
Two-level finite element method with a stabilizing subgrid for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 58 (2008), 551-572.
DOI 10.1002/fld.1753 |
MR 2458542 |
Zbl 1145.76032
[39] Schmidt, P. G.:
A Galerkin method for time-dependent MHD flow with nonideal boundaries. Commun. Appl. Anal. 3 (1999), 383-398.
MR 1696344 |
Zbl 0931.76099
[42] Su, H., Mao, S., Feng, X.:
Optimal error estimates of penalty based iterative methods for steady incompressible magnetohydrodynamics equations with different viscosities. J. Sci. Comput. 79 (2019), 1078-1110.
DOI 10.1007/s10915-018-0883-7 |
MR 3969002 |
Zbl 1419.65123
[44] Temam, R.:
Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam (1984).
MR 0769654 |
Zbl 0568.35002
[45] Wang, L., Li, J., Huang, P.:
An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method. Int. Commun. Heat Mass Transfer 98 (2018), 183-190.
DOI 10.1016/j.icheatmasstransfer.2018.02.019