[2] Armeniakos, G., Zervakis, G., Soudris, D., Henkel, J.:
Hardware approximate techniques for deep neural network accelerators: A survey. ACM Comput. Surv. 55 (2022), Article ID 83, 36 pages.
DOI 10.1145/352715
[5] Chatterjee, S., Hadi, A. S.:
Regression Analysis by Example. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2012).
DOI 10.1002/0470055464 |
Zbl 1263.62099
[6] Chicco, D., Warrens, M. J., Jurman, G.:
The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7 (2021), Article ID e623, 28 pages.
DOI 10.7717/peerj-cs.623
[10] Deb, S.:
A novel robust R-squared measure and its applications in linear regression. Computational Intelligence in Information Systems Advances in Intelligent Systems and Computing 532. Springer, Cham (2016), 131-142.
DOI 10.1007/978-3-319-48517-1_12
[13] Gelman, A., Hill, J.:
Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge (2006).
DOI 10.1017/CBO9780511790942
[14] Greene, W. H.: Econometric Analysis. Pearson Education, Harlow (2018).
[17] Kalina, J.:
A robust pre-processing of BeadChip microarray images. Biocybernet. Biomedic. Eng. 38 (2018), 556-563.
DOI 10.1016/j.bbe.2018.04.005
[20] Kalina, J., Matonoha, C.:
A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images. Biocybernet. Biomedic. Eng. 40 (2020), 774-786.
DOI 10.1016/j.bbe.2020.03.008
[24] Lourenço, V. M., Rodrigues, P. C., Pires, A. M., Piepho, H.-P.:
A robust DF-REML framework for variance components estimation in genetic studies. Bioinform. 33 (2017), 3584-3594.
DOI 10.1093/bioinformatics/btx457
[26] Maronna, R. A., Martin, R. D., Yohai, V. J., Salibián-Barrera, M.:
Robust Statistics: Theory and Methods (with R). Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken (2019).
DOI 10.1002/9781119214656 |
MR 3839299 |
Zbl 1409.62009
[27] Mittal, M., Satapathy, S. C., Pal, V., Agarwal, B., Goyal, L. M., Parwekar, P.:
Prediction of coefficient of consolidation in soil using machine learning techniques. Microprocessors Microsyst. 82 (2021), Article ID 103830, 15 pages.
DOI 10.1016/j.micpro.2021.103830
[29] Noma, H., Shinozaki, T., Iba, K., Teramukai, S., Furukawa, T. A.:
Confidence intervals of prediction accuracy measures for multivariable prediction models based on the bootstrap-based optimism correction methods. Stat. Med. 40 (2021), 5691-5701.
DOI 10.1002/sim.9148 |
MR 4330574 |
Zbl 1546.62560
[37] Shevlyakov, G. L., Vilchevski, N. O.: Robustness in Data Analysis: Criteria and Methods. Modern Probability and Statistics. VSP, Utrecht (2002).
[38] Späth, H.: Mathematical Algorithms for Linear Regression. Academic Press, Boston (1991).
[40] Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J. S.:
Efficient processing of deep neural networks. Synthesis Lectures on Computer Architecture 51. Morgan & Claypool Publishers, San Rafael (2020).
DOI 10.1007/978-3-031-01766-7 |
Zbl 1437.68006
[41] Víšek, J. Á.:
Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47 (2011), 179-206.
MR 2828572 |
Zbl 1220.62064
[42] Wickham, H., Gentleman, R., Ihaka, R., Venables, J. M. Chambers,W. N., Ripley, B. D.:
R: The R Project for Statistical Computing. Available at
https://www.r-project.org/ (2018).
[43] Yu, F. W., Ho, W. T., Chan, K. T., Sit, R. K. Y.:
Critique of operating variables importance on chiller energy performance using random forest. Energy Buildings 139 (2017), 653-664.
DOI 10.1016/j.enbuild.2017.01.063