[2] Apelblat, A.:
Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach. Mathematics 8 (2020), Article ID 657, 22 pages.
DOI 10.3390/math8050657
[4] Bhatter, S., Kumawat, S., Purohit, S. D., Suthar, D. L.:
Mathematical modeling of tuberculosis using Caputo fractional derivative: A comparative analysis with real data. Sci. Rep. 15 (2025), Article ID 12672, 19 pages.
DOI 10.1038/s41598-025-97502-5
[5] Chasnov, J. R.:
Introduction to Differential Equations. The Hong Kong University of Science and Technology, Hong Kong (2009), Available at {\def\let \relax \brokenlink{
https://www.ms.uky.}{edu/ ejwh226/Spring2018/Chasnov.pdf}}\kern0pt.
[6] Vlas, S. J. de, Verver, S., Cai, R., Vanhommerig, J. W., Hontelez, J., Coffeng, L., Noordegraaf-Schouten, M. V., Richardus, J. H.:
Mathematical Modelling of Programmatic Screening Strategies for Latent Tuberculosis Infection in Countries with Low Tuberculosis Incidence: ECDC Technical Report. European Centre for Disease Prevention and Control, Stockholm (2018), Available at {\def{ }\let \relax \brokenlink{
https://www.ecdc.europa.eu/sites/default/}{files/documents/LTBI-math-models_Feb2018-edited.pdf}}\kern0pt
[10] Khan, A., Shah, K., Abdeljawad, T., Amacha, I.:
Fractal fractional model for tuberculosis: Existence and numerical solutions. Sci. Rep. 14 (2024), Article ID 12211, 19 pages.
DOI 10.1038/s41598-024-62386-4
[11] Kilbas, A. A., Rivero, M., Trujillo, J. J.:
Existence and uniqueness theorems for differential equations of fractional order in weighted spaces of continuous functions. Fract. Calc. Appl. Anal. 6 (2003), 363-399.
MR 2044306 |
Zbl 1085.34002
[13] Li, Y., Liu, X., Yuan, Y., Li, J., Wang, L.:
Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States. Appl. Math. Comput. 422 (2022), Article ID 126983, 21 pages.
DOI 10.1016/j.amc.2022.126983 |
MR 4376403 |
Zbl 1510.92219
[17] Mondal, P. K., Kar, T. K.:
Optimal treatment control and bifurcation analysis of a tuberculosis model with effect of multiple re-infections. Int. J. Dyn. Control 5 (2017), 367-380.
DOI 10.1007/s40435-015-0176-z |
MR 3656606
[18] Nandi, T. R., Saha, A. K., Roy, S.:
Analysis of a fractional order epidemiological model for tuberculosis transmission with vaccination and reinfection. Sci. Rep. 14 (2024), Article ID 28290, 21 pages.
DOI 10.1038/s41598-024-73392-x
[19] Olayiwola, M. O., Adedokun, K. A.:
A novel tuberculosis model incorporating a Caputo fractional derivative and treatment effect via the homotopy perturbation method. Bull. Natl. Res. Cent. 47 (2023), Article ID 121, 16 pages.
DOI 10.1186/s42269-023-01079-9
[20] K. Oshinubi, O. J. Peter, E. Addai, E. Mwizerwa, O. Babasola, I. V. Nwabufo, I. Sane, U. M. Adam, A. Adeniji, J. O. Agbaje:
Mathematical modelling of tuberculosis outbreak in an East African country incorporating vaccination and treatment. Computation 11 (2023), Article ID 143, 21 pages.
DOI 10.3390/computation11070143
[21] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F.:
The Mathematical Theory of Optimal Processes. Interscience Publishers, New York (1962).
MR 0166037 |
Zbl 0102.32001
[22] Pooseh, S., Rodrigues, H. S., Torres, D. F. M.:
Fractional derivatives in dengue epidemics. AIP Conf. Proc. 1389 (2011), 739-742.
DOI 10.1063/1.3636838
[24] Tilahun, G. T., Wolle, G. A., Tofik, M.:
Eco-epidemiological model and analysis of potato leaf roll virus using fractional differential equation. Arab J. Basic Appl. Sci. 28 (2021), 41-50.
DOI 10.1080/25765299.2020.1865621
[30] Yang, Y., Tang, S., Ren, X., Zhao, H., Guo, C.:
Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 1009-1022.
DOI 10.3934/dcdsb.2016.21.1009 |
MR 3503055 |
Zbl 1333.34081
[32] Ziv, E., Daley, C. L., Blower, S.:
Potential public health impact of new tuberculosis vaccines. Emerging Infectious Diseases 10 (2004), 1529-1535.
DOI 10.3201/eid1009.030921