[1] Brouwer, L. E. J.: De onbetrouwbaarheid der logische principes. Tijdschrift Wijsbegeerte 2 (1908), 152-158 Dutch.
[3] Chajda, I.:
An extension of relative pseudocomplementation to non-distributive lattices. Acta Sci. Math. 69 (2003), 491-496.
MR 2034188 |
Zbl 1048.06005
[4] Chajda, I.:
Pseudocomplemented and Stone posets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51 (2012), 29-34.
MR 3060006 |
Zbl 1302.06001
[5] Chajda, I., Eigenthaler, G., Länger, H.:
Congruence Classes in Universal Algebra. Research and Exposition in Mathematics 26. Heldermann, Lemgo (2012).
MR 1985832 |
Zbl 1014.08001
[6] Chajda, I., Länger, H.:
Implication in finite posets with pseudocomplemented sections. Soft Comput. 26 (2022), 5945-5953.
DOI 10.1007/s00500-022-07052-5
[9] Chajda, I., Länger, H.:
Algebraic structures formalizing the logic with unsharp implication and negation. (to appear) in Log. J. IGPL. (2023), 13 pages.
DOI 10.1093/jigpal/jzad023
[14] Heyting, A.: Die formalen Regeln der intuitionistischen Logik. I. Sitzungsberichte Akad. Berlin 1930 (1930), 42-56 German \99999JFM99999 56.0823.01.
[16] Monteiro, A.:
Axiomes indépendants pour les algèbres de Brouwer. Rev. Un. Mat. Argentina 17 (1956), 149-160 French.
MR 0084483 |
Zbl 0072.25004
[18] Pták, P., Pulmannová, S.:
Orthomodular Structures as Quantum Logics. Fundamental Theories of Physics 44. Kluwer, Dordrecht (1991).
MR 1176314 |
Zbl 0743.03039