Previous |  Up |  Next

Article

Title: Intuitionistic-like unsharp implication and negation defined on a poset (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Mathematica Bohemica
ISSN: 0011-4642
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 4
Year: 2025
Pages: 497-512
Summary lang: English
.
Category: math
.
Summary: The aim of the present paper is to show that the concepts of the intuitionistic implication and negation formalized by means of a Heyting algebra can be generalized in such a way that these concepts are formalized by means of a bounded poset. In this case it is not assumed that the poset is relatively pseudocomplemented. The considered logical connectives negation, implication or even conjunction are not operations in this poset but so-called operators since they assign to given entries not necessarily an element of the poset as a result but a subset of mutually incomparable elements. We show that these operators for negation and implication can be characterized by several simple conditions formulated in the language of posets together with the operator of taking the lower cone. Moreover, our implication and conjunction form an adjoint pair. We call these connectives ``unsharp'' or ``inexact'' in accordance with the existing literature. We also introduce the concept of a deductive system of a bounded poset with implication and prove that it induces an equivalence relation satisfying a certain substitution property with respect to implication. Moreover, the restriction of this equivalence to the base set is uniquely determined by its kernel, i.e., the class containing the top element. (English)
Keyword: bounded poset
Keyword: logical connectives defined on a poset
Keyword: unsharp negation
Keyword: unsharp implication
Keyword: adjoint operator
Keyword: Modus Ponens
Keyword: deductive system
Keyword: equivalence relation induced by a deductive system
MSC: 03G25
MSC: 06A11
MSC: 06D15
MSC: 06D20
DOI: 10.21136/MB.2024.0179-23
.
Date available: 2025-11-07T18:18:43Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153159
.
Reference: [1] Brouwer, L. E. J.: De onbetrouwbaarheid der logische principes.Tijdschrift Wijsbegeerte 2 (1908), 152-158 Dutch.
Reference: [2] Brouwer, L. E. J.: Intuitionism and formalism.Bull. Am. Math. Soc. 20 (1913), 81-96 \99999JFM99999 44.0085.06. MR 1559427, 10.1090/S0002-9904-1913-02440-6
Reference: [3] Chajda, I.: An extension of relative pseudocomplementation to non-distributive lattices.Acta Sci. Math. 69 (2003), 491-496. Zbl 1048.06005, MR 2034188
Reference: [4] Chajda, I.: Pseudocomplemented and Stone posets.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51 (2012), 29-34. Zbl 1302.06001, MR 3060006
Reference: [5] Chajda, I., Eigenthaler, G., Länger, H.: Congruence Classes in Universal Algebra.Research and Exposition in Mathematics 26. Heldermann, Lemgo (2012). Zbl 1014.08001, MR 1985832
Reference: [6] Chajda, I., Länger, H.: Implication in finite posets with pseudocomplemented sections.Soft Comput. 26 (2022), 5945-5953. 10.1007/s00500-022-07052-5
Reference: [7] Chajda, I., Länger, H.: The logic of orthomodular posets of finite height.Log. J. IGPL 30 (2022), 143-154. Zbl 1507.03105, MR 4367693, 10.1093/jigpal/jzaa067
Reference: [8] Chajda, I., Länger, H.: Operator residuation in orthomodular posets of finite height.Fuzzy Sets Syst. 467 (2023), Article ID 108589, 11 pages. Zbl 1543.06001, MR 4598488, 10.1016/j.fss.2023.108589
Reference: [9] Chajda, I., Länger, H.: Algebraic structures formalizing the logic with unsharp implication and negation.(to appear) in Log. J. IGPL. (2023), 13 pages. 10.1093/jigpal/jzad023
Reference: [10] Chajda, I., Länger, H., Paseka, J.: Sectionally pseudocomplemented posets.Order 38 (2021), 527-546. Zbl 1490.06001, MR 4325977, 10.1007/s11083-021-09555-6
Reference: [11] Finch, P. D.: On orthomodular posets.J. Aust. Math. Soc. 11 (1970), 57-62. Zbl 0211.02701, MR 0255449, 10.1017/S1446788700005978
Reference: [12] Frink, O.: Pseudo-complements in semi-lattices.Duke Math. J. 29 (1962), 505-514. Zbl 0114.01602, MR 0140449, 10.1215/S0012-7094-62-02951-4
Reference: [13] Giuntini, R., Greuling, H.: Toward a formal language for unsharp properties.Found. Phys. 19 (1989), 931-945. MR 1013913, 10.1007/BF01889307
Reference: [14] Heyting, A.: Die formalen Regeln der intuitionistischen Logik. I.Sitzungsberichte Akad. Berlin 1930 (1930), 42-56 German \99999JFM99999 56.0823.01.
Reference: [15] Köhler, P.: Brouwerian semilattices: the lattice of total subalgebras.Banach Center Publ. 9 (1982), 47-56. Zbl 0514.06009, MR 0738800, 10.4064/-9-1-47-56
Reference: [16] Monteiro, A.: Axiomes indépendants pour les algèbres de Brouwer.Rev. Un. Mat. Argentina 17 (1956), 149-160 French. Zbl 0072.25004, MR 0084483
Reference: [17] Monteiro, L.: Les algèbres de Heyting et de Lukasiewicz trivalentes.Notre Dame J. Formal Logic 11 (1970), 453-466 French. Zbl 0177.01001, MR 0286633, 10.1305/ndjfl/1093894076
Reference: [18] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics.Fundamental Theories of Physics 44. Kluwer, Dordrecht (1991). Zbl 0743.03039, MR 1176314
.

Files

Files Size Format View
MathBohem_150-2025-4_2.pdf 250.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo