[1] J. C. ABBOTT: 
Semi-boolean algebra. Mat. Vestnik 4 (19) (1967), 177-198. 
MR 0239957[2] G. GRÄTZER: 
Two Mal'cev-type theorems in universal algebra. J. Combinatorial Theory 8 (1970), 334-342. 
MR 0279022 | 
Zbl 0194.01401[3] G. GRÄTZER: 
Universal Algebra. Second Expanded Edixion, Springer-Verlag, Berlin, Heidelberg and New York, 1979. 
MR 0538623[4] J. HAGEMANN A. MITSCHKE: 
On n-permutable congruences. Algebra Universalis 3 (1973), 8-12. 
MR 0330010[6] I. CHAJDA: 
Recent results and trends in tolerances on algebras and varieties. Colloq. Math. (Szeged), Vol. 28, Finite algebras and multiple-valued logic, (1981), 69-95. 
MR 0648608 | 
Zbl 0484.08002[7] I. CHAJDA B. ZELINKA: 
Minimal compatible tolerances on lattices. Czech. Math. J. 27 (1977), 452-459. 
MR 0457300[8] J. JEŽEK: 
Universal Algebra and Model Theory. (in Czech), SNTL, Praha 1976. 
MR 0546057[9] T. KATRIŇAK: 
Congruence lattices of distributive $p$-algebras. Algebra Universalis 7 (1977), 26 5-271. 
MR 0434908[1O] A. I. MAL'CEV: 
On the general theory of algebraic systems. (in Russian), Math. Sbornik N.S. 35 (77) (1954), 3-20. 
MR 0065533[11] A. MITSCHKE: 
Implication algebras are $3$-permutable and $3$-distributive. Algebra Universalis 1 (1971), 182-186. 
MR 0309828 | 
Zbl 0242.08005[12] H. WERNER: 
A Mal'cev condition for admissible relations. Algebra Universalis 3 (1973), 263. 
MR 0330009 | 
Zbl 0276.08004[13] R. WILLE: 
Kongruenzklassengeometrien. Lecture Notes in Mathematics No. 113, Springer-Verlag, Berlin,1970. 
MR 0262149 | 
Zbl 0191.51403