[1] Ancochea, J. M., Campoamor–Stursberg, R., Vergnolle, L. Garcia: 
Solvable Lie algebras with naturally graded nilradicals and their invariants. J. Phys. A, Math. Theor. 39 (2006), 1339–1355. 
DOI 10.1088/0305-4470/39/6/008 | 
MR 2202805[2] Campoamor–Stursberg, R.: 
Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A, Math. Theor. 43 (2010), Article ID 145202. 
DOI 10.1088/1751-8113/43/14/145202 | 
MR 2606433[3] Echarte, F. J., Gómez, J. R., Núñez, J.: 
Les algèbres de Lie filiformes complexes dérivées d’autres algèbres de Lie. [Complex filiform Lie algebras derived from other Lie algebras], Lois d'algèbres et variétés algébraiques (Colmar, 1991), Travaux en Cours 50, Hermann, Paris, 1996, pp. 45–55. 
MR 1600982[5] Goze, M., Khakimdjanov, Yu.: 
Nilpotent Lie algebras. Kluwer Academic Publishers Group, Dordrecht, 1996. 
MR 1383588 | 
Zbl 0845.17012[6] Goze, M., Khakimdjanov, Yu.: 
Handbook of algebra. vol. 2, ch. Nilpotent and solvable Lie algebras, pp. 615–663, North-Holland, Amsterdam, 2000. 
MR 1759608[9] Vergne, M.: 
Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes. C. R. Math. Acad. Sci. Paris Sèr. A–B 267 (1968), A867–A870. 
MR 0245632 | 
Zbl 0244.17010