Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
Summary:
Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu $ with $\nu =\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem $$ \begin{cases} \biggl (\dfrac {u'}{\sqrt {1-u'^2}}\bigg )^{\prime }+\lambda a(x) f(u)=0, & x\in (0,1), \\ u(0)=u(1)=0, & \end{cases} $$ where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
References:
[1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87 (1982), 131-152. DOI 10.1007/BF01211061 | MR 0680653 | Zbl 0512.53055
[2] Bereanu, C., Jebelean, P., Torres, P. J.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal. 265 (2013), 644-659. DOI 10.1016/j.jfa.2013.04.006 | MR 3062540 | Zbl 1285.35051
[3] Bereanu, C., Jebelean, P., Torres, P. J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264 (2013), 270-287. DOI 10.1016/j.jfa.2012.10.010 | MR 2995707 | Zbl 1336.35174
[4] Boscaggin, A., Garrione, M.: Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball. Commun. Contemp. Math. 21 (2019), Artile ID 1850006, 18 pages. DOI 10.1142/S0219199718500062 | MR 3918043 | Zbl 1416.35096
[5] Cheng, S.-Y., Yau, S.-T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. (2) 104 (1976), 407-419. DOI 10.2307/1970963 | MR 0431061 | Zbl 0352.53021
[6] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638. DOI 10.1515/ans-2012-0310 | MR 2976056 | Zbl 1263.34028
[7] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl. 405 (2013), 227-239. DOI 10.1016/j.jmaa.2013.04.003 | MR 3053503 | Zbl 1310.35140
[8] Dai, G.: Global structure of one-sign solutions for problem with mean curvature operator. Nonlinearity 31 (2018), 5309-5328. DOI 10.1088/1361-6544/aadf43 | MR 3867236
[9] Dai, G., Wang, J.: Nodal solutions to problem with mean curvature operator in Minkowski space. Differ. Integral Equ. 30 (2017), 463-480. DOI 10.57262/die/1489802422 | MR 3626584 | Zbl 1424.35187
[10] Dancer, E. N.: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J. 23 (1974), 1069-1076. DOI 10.1512/iumj.1974.23.23087 | MR 0348567 | Zbl 0276.47051
[11] Feynman, R. P., Leighton, R. B., Sands, M.: The Feynman Lectures on Physics. II.: Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1964). MR 0213078 | Zbl 0131.38703
[12] Huang, S.-Y.: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications. J. Differ. Equations 264 (2018), 5977-6011. DOI 10.1016/j.jde.2018.01.021 | MR 3765772 | Zbl 1390.34051
[13] Hutten, E. H.: Relativistic (non-linear) oscillator. Nature, London 205 (1965), 892. DOI 10.1038/205892a0 | Zbl 0125.19603
[14] Jaroš, J., Kusano, T.: A Picone type identity for second-order half-linear differential equations. Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. MR 1711081 | Zbl 0926.34023
[15] Li, H. J., Yeh, C. C.: Sturmian comparison theorem for half-linear second-order differential equations. Proc. R. Soc. Edinb., Sect. A 125 (1995), 1193-1204. DOI 10.1017/s0308210500030468 | MR 1362999 | Zbl 0873.34020
[16] Liang, Y.-H., Wang, S.-H.: Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions. J. Differ. Equations 260 (2016), 8358-8387. DOI 10.1016/j.jde.2016.02.021 | MR 3482686 | Zbl 1336.34029
[17] Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball. J. Funct. Anal. 270 (2016), 2430-2455. DOI 10.1016/j.jfa.2016.01.020 | MR 3464046 | Zbl 1342.34044
[18] Ma, R., Xu, M.: $S$-shaped connected component for a nonlinear Dirichlet problem involving mean curvature operator in one-dimension Minkowski space. Bull. Korean Math. Soc. 55 (2018), 1891-1908. DOI 10.4134/BKMS.b180011 | MR 3890911 | Zbl 1414.34020
[19] MacColl, L. A.: Theory of the relativistic oscillator. Am. J. Phys. 25 (1957), 535-538. DOI 10.1119/1.1934543 | MR 0089059 | Zbl 0078.18904
[20] Shibata, T.: $S$-shaped bifurcation curves for nonlinear two-parameter problems. Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 796-808. DOI 10.1016/j.na.2013.10.015 | MR 3130562 | Zbl 1296.34100
[21] Sim, I., Tanaka, S.: Three positive solutions for one-dimensional $p$-Laplacian problem with sign-changing weight. Appl. Math. Lett. 49 (2015), 42-50. DOI 10.1016/j.aml.2015.04.007 | MR 3361694 | Zbl 1342.35122
[22] Walter, W.: Ordinary Differential Equations. Graduate Texts in Mathematics 182. Springer, New York (1998). DOI 10.1007/978-1-4612-0601-9 | MR 1629775 | Zbl 0991.34001
Partner of
EuDML logo