Title:
|
$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator (English) |
Author:
|
Ma, Ruyun |
Author:
|
He, Zhiqian |
Author:
|
Su, Xiaoxiao |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
73 |
Issue:
|
2 |
Year:
|
2023 |
Pages:
|
321-333 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu $ with $\nu =\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem $$ \begin{cases} \biggl (\dfrac {u'}{\sqrt {1-u'^2}}\bigg )^{\prime }+\lambda a(x) f(u)=0, & x\in (0,1), \\ u(0)=u(1)=0, & \end{cases} $$ where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique. (English) |
Keyword:
|
mean curvature operator |
Keyword:
|
$S_k^\nu $-solution |
Keyword:
|
bifurcation |
Keyword:
|
Sturm-type comparison theorem |
MSC:
|
34C10 |
MSC:
|
34C23 |
MSC:
|
35B40 |
MSC:
|
35J65 |
idZBL:
|
Zbl 07729510 |
idMR:
|
MR4586897 |
DOI:
|
10.21136/CMJ.2023.0027-20 |
. |
Date available:
|
2023-05-04T17:41:04Z |
Last updated:
|
2025-07-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151659 |
. |
Reference:
|
[1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature.Commun. Math. Phys. 87 (1982), 131-152. Zbl 0512.53055, MR 0680653, 10.1007/BF01211061 |
Reference:
|
[2] Bereanu, C., Jebelean, P., Torres, P. J.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space.J. Funct. Anal. 265 (2013), 644-659. Zbl 1285.35051, MR 3062540, 10.1016/j.jfa.2013.04.006 |
Reference:
|
[3] Bereanu, C., Jebelean, P., Torres, P. J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space.J. Funct. Anal. 264 (2013), 270-287. Zbl 1336.35174, MR 2995707, 10.1016/j.jfa.2012.10.010 |
Reference:
|
[4] Boscaggin, A., Garrione, M.: Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball.Commun. Contemp. Math. 21 (2019), Artile ID 1850006, 18 pages. Zbl 1416.35096, MR 3918043, 10.1142/S0219199718500062 |
Reference:
|
[5] Cheng, S.-Y., Yau, S.-T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces.Ann. Math. (2) 104 (1976), 407-419. Zbl 0352.53021, MR 0431061, 10.2307/1970963 |
Reference:
|
[6] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation.Adv. Nonlinear Stud. 12 (2012), 621-638. Zbl 1263.34028, MR 2976056, 10.1515/ans-2012-0310 |
Reference:
|
[7] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space.J. Math. Anal. Appl. 405 (2013), 227-239. Zbl 1310.35140, MR 3053503, 10.1016/j.jmaa.2013.04.003 |
Reference:
|
[8] Dai, G.: Global structure of one-sign solutions for problem with mean curvature operator.Nonlinearity 31 (2018), 5309-5328. MR 3867236, 10.1088/1361-6544/aadf43 |
Reference:
|
[9] Dai, G., Wang, J.: Nodal solutions to problem with mean curvature operator in Minkowski space.Differ. Integral Equ. 30 (2017), 463-480. Zbl 1424.35187, MR 3626584, 10.57262/die/1489802422 |
Reference:
|
[10] Dancer, E. N.: On the structure of solutions of non-linear eigenvalue problems.Indiana Univ. Math. J. 23 (1974), 1069-1076. Zbl 0276.47051, MR 0348567, 10.1512/iumj.1974.23.23087 |
Reference:
|
[11] Feynman, R. P., Leighton, R. B., Sands, M.: The Feynman Lectures on Physics. II.: Mainly Electromagnetism and Matter.Addison-Wesley, Reading (1964). Zbl 0131.38703, MR 0213078 |
Reference:
|
[12] Huang, S.-Y.: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications.J. Differ. Equations 264 (2018), 5977-6011. Zbl 1390.34051, MR 3765772, 10.1016/j.jde.2018.01.021 |
Reference:
|
[13] Hutten, E. H.: Relativistic (non-linear) oscillator.Nature, London 205 (1965), 892. Zbl 0125.19603, 10.1038/205892a0 |
Reference:
|
[14] Jaroš, J., Kusano, T.: A Picone type identity for second-order half-linear differential equations.Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. Zbl 0926.34023, MR 1711081 |
Reference:
|
[15] Li, H. J., Yeh, C. C.: Sturmian comparison theorem for half-linear second-order differential equations.Proc. R. Soc. Edinb., Sect. A 125 (1995), 1193-1204. Zbl 0873.34020, MR 1362999, 10.1017/s0308210500030468 |
Reference:
|
[16] Liang, Y.-H., Wang, S.-H.: Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions.J. Differ. Equations 260 (2016), 8358-8387. Zbl 1336.34029, MR 3482686, 10.1016/j.jde.2016.02.021 |
Reference:
|
[17] Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball.J. Funct. Anal. 270 (2016), 2430-2455. Zbl 1342.34044, MR 3464046, 10.1016/j.jfa.2016.01.020 |
Reference:
|
[18] Ma, R., Xu, M.: $S$-shaped connected component for a nonlinear Dirichlet problem involving mean curvature operator in one-dimension Minkowski space.Bull. Korean Math. Soc. 55 (2018), 1891-1908. Zbl 1414.34020, MR 3890911, 10.4134/BKMS.b180011 |
Reference:
|
[19] MacColl, L. A.: Theory of the relativistic oscillator.Am. J. Phys. 25 (1957), 535-538. Zbl 0078.18904, MR 0089059, 10.1119/1.1934543 |
Reference:
|
[20] Shibata, T.: $S$-shaped bifurcation curves for nonlinear two-parameter problems.Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 796-808. Zbl 1296.34100, MR 3130562, 10.1016/j.na.2013.10.015 |
Reference:
|
[21] Sim, I., Tanaka, S.: Three positive solutions for one-dimensional $p$-Laplacian problem with sign-changing weight.Appl. Math. Lett. 49 (2015), 42-50. Zbl 1342.35122, MR 3361694, 10.1016/j.aml.2015.04.007 |
Reference:
|
[22] Walter, W.: Ordinary Differential Equations.Graduate Texts in Mathematics 182. Springer, New York (1998). Zbl 0991.34001, MR 1629775, 10.1007/978-1-4612-0601-9 |
. |