Previous |  Up |  Next

Article

Title: On distance Laplacian energy in terms of graph invariants (English)
Author: Ganie, Hilal A.
Author: Ul Shaban, Rezwan
Author: Rather, Bilal A.
Author: Pirzada, Shariefuddin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 335-353
Summary lang: English
.
Category: math
.
Summary: For a simple connected graph $G$ of order $n$ having distance Laplacian eigenvalues $ \rho ^{L}_{1}\geq \rho ^{L}_{2}\geq \cdots \geq \rho ^{L}_{n}$, the distance Laplacian energy ${\rm DLE} (G)$ is defined as ${\rm DLE} (G)=\sum _{i=1}^{n}|\rho ^{L}_i-{2W(G)}/{n}|$, where $W(G)$ is the Wiener index of $G$. We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy ${\rm DLE} (G)$ in terms of the order $n$, the Wiener index $W(G)$, the independence number, the vertex connectivity number and other given parameters. We characterize the extremal graphs attaining these bounds. We show that the complete bipartite graph has the minimum distance Laplacian energy among all connected bipartite graphs and the complete split graph has the minimum distance Laplacian energy among all connected graphs with a given independence number. Further, we obtain the distance Laplacian spectrum of the join of a graph with the union of two other graphs. We show that the graph $K_{k}\bigtriangledown (K_{t}\cup K_{n-k-t})$, $1\leq t \leq \lfloor \frac {n-k}{2}\rfloor $, has the minimum distance Laplacian energy among all connected graphs with vertex connectivity $k$. We conclude this paper with a discussion on the trace norm of a matrix and the importance of our results in the theory of the trace norm of the matrix $D^L(G)-(2W(G)/n)I_n$. (English)
Keyword: distance matrix
Keyword: energy
Keyword: distance Laplacian matrix
Keyword: distance Laplacian energy
MSC: 05C12
MSC: 05C50
MSC: 15A18
idZBL: Zbl 07729511
idMR: MR4586898
DOI: 10.21136/CMJ.2023.0421-20
.
Date available: 2023-05-04T17:41:41Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151661
.
Reference: [1] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph.Linear Algebra Appl. 439 (2013), 21-33. Zbl 1282.05086, MR 3045220, 10.1016/j.laa.2013.02.030
Reference: [2] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey.Linear Algebra Appl. 458 (2014), 301-386. Zbl 1295.05093, MR 3231823, 10.1016/j.laa.2014.06.010
Reference: [3] Aouchiche, M., Hansen, P.: Some properties of the distance Laplacian eigenvalues of a graph.Czech. Math. J. 64 (2014), 751-761. Zbl 1349.05083, MR 3298557, 10.1007/s10587-014-0129-2
Reference: [4] Brouwer, A. E., Haemers, W. H.: Spectra of graphs.Universitext. Berlin: Springer (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6
Reference: [5] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application.Pure and Applied Mathematics 87. Academic Press, New York (1980). Zbl 0824.05046, MR 0572262
Reference: [6] Das, K. C., Aouchiche, M., Hansen, P.: On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs.Discrete Appl. Math. 243 (2018), 172-185. Zbl 1387.05147, MR 3804748, 10.1016/j.dam.2018.01.004
Reference: [7] Díaz, R. C., Rojo, O.: Sharp upper bounds on the distance energies of a graph.Linear Algebra Appl. 545 (2018), 55-75. Zbl 1390.05124, MR 3769113, 10.1016/j.laa.2018.01.032
Reference: [8] Ganie, H. A.: On distance Laplacian spectrum (energy) of graphs.Discrete Math. Algorithms Appl. 12 (2020), Article ID 2050061, 16 pages. Zbl 1457.05064, MR 4157019, 10.1142/S1793830920500615
Reference: [9] Ganie, H. A.: On the distance Laplacian energy ordering of tree.Appl. Math. Comput. 394 (2021), Article ID 125762, 10 pages. Zbl 1462.05222, MR 4182919, 10.1016/j.amc.2020.125762
Reference: [10] Ganie, H. A., Chat, B. A., Pirzada, S.: Signless Laplacian energy of a graph and energy of line graph.Linear Algebra Appl. 544 (2018), 306-324. Zbl 1388.05114, MR 3765789, 10.1016/j.laa.2018.01.021
Reference: [11] Ganie, H. A., Pirzada, S., Rather, B. A., Trevisan, V.: Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 588 (2020), 1-18. Zbl 1437.05139, MR 4037607, 10.1016/j.laa.2019.11.020
Reference: [12] Gutman, I., Zhou, B.: Laplacian energy of a graph.Linear Algebra Appl. 414 (2006), 29-37. Zbl 1092.05045, MR 2209232, 10.1016/j.laa.2005.09.008
Reference: [13] Indulal, G., Gutman, I., Vijayakumar, A.: On distance energy of graphs.MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472. Zbl 1199.05226, MR 2457864
Reference: [14] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, New York (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2
Reference: [15] Monsalve, J., Rada, J.: Oriented bipartite graphs with minimal trace norm.Linear Multilinear Algebra 67 (2019), 1121-1131. Zbl 1411.05172, MR 3937031, 10.1080/03081087.2018.1448051
Reference: [16] Pirzada, S.: An Introduction to Graph Theory.Orient Blackswan, Hyderabad (2012).
Reference: [17] Pirzada, S., Ganie, H. A.: On the Laplacian eigenvalues of a graph and Laplacian energy.Linear Algebra Appl. 486 (2015), 454-468. Zbl 1327.05157, MR 3401774, 10.1016/j.laa.2015.08.032
Reference: [18] Yang, J., You, L., Gutman, I.: Bounds on the distance Laplacian energy of graphs.Kragujevac J. Math. 37 (2013), 245-255. Zbl 1299.05236, MR 3150862
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo